


Note Solutions to problems 3-5 courtesy Prof. Jacob White of MIT.

3 (a) In general, the constitutive relation for any circuit element can be written as:

Zvv + Zii = s

where Zv; Zi are matrices that depend on the nature of the element, and s is a vector of

source terms.

W
ibia

ic
+

-

vc
+

-

va
+

-
vb

We have already seen this (in a simplied form) in the equation Gv = i. Consider a resistor

of value 1=g:
gv � i = 0;

a current source of value is:
0v + i = is;

or a voltage-controlled current source:

g(v1 � v2) = i34:

Each of the above constitutive relations can be written in the form i = Gv, i.e. we could

solve for i on one side of the equation. In other words, the Zi matrix can be inverted. This

is the situation in which plain nodal analysis may be applied.

However, the Zi matrix for the W-element is singular (the �rst column equals the sum of the
second plus the third), so we cannot solve the constitutive relation for i, and thus cannot

use NA for circuits featuring the W-element.

(b) We use the modi�ed nodal analysis (MNA) here. MNA is in fact the most popular

formulation approach today for circuit simulation programs like SPICE. The MNA matrix

retains many of the nice numerical properties of the PNA (plain nodal analysis) matrix if
most of the elements have constitutive relations with invertible Zi.

g

ggis

i3

i1 i2
W

We start by treating the branch currents i1; i2; i3 associated with the W-element as known

current sources, and simply writing down the plain nodal analysis equations:

gv1 = is � i1

2



gv2 = �i2

gv3 = �i3

Since the currents i1; i2; i3 are really unknowns, we move them to the left-hand-side. There

are now three equations and six unknowns. The additional three equations we need are just

the constitutive relations for the W-element:

v1 + i1 + i2 = 0

v1 + v2 + i2 � i3 = 0

v1 + v2 + v3 + i1 + i3 = 0

Putting everything in matrix form, we get

2
66666664

g 1

g 1

g 1

1 1 1

1 1 1 �1
1 1 1 1 1

3
77777775

2
66666664

v1
v2
v3
i1
i2
i3

3
77777775
=

2
66666664

is
3
77777775

Note that the �rst three rows are simply plain nodal analysis equations rearranged to treat

the \�ctitious" current sources as unknowns; the upper left corner of the matrix is exactly

the nodal analysis matrix. The last three rows are the constitutive relations.

4 (a) The structure of the N �N conductance matrix G is:

G =

2
666666664

2G �G 0 � � � 0

�G 2G �G
. . .

...

0 �G
. . .

. . . 0
...

. . .
. . .

. . . �G
0 � � � 0 �G 2G

3
777777775

The matrix G is a tridiagonal matrix (i.e. a band matrix of bandwidth 2). By inspection,

the number of nonzero entries in G is N + 2(N � 1) = 3N � 2.

(b) The matrix problem for the resistor line, written in terms of the resistance matrix G�1

is G�1i = v where i is the vector of current source currents owing into each of the nodes,

and v is the vector of node voltages. For our original resistor line, i is a zero vector.

Suppose now that the j-th entry of the vector i is nonzero. Physically, an injection of

current into node j will cause a change in all the node voltages. The j-th entry of vector

i multiplies only the j-th column of G�1. So a change in all the node voltages in v will

be algebraically possible only if the j-th column of G�1 consists of all nonzero entries, i.e.

G�1
i;j 6= 0 for all i.

By extending this argument to all entries of the current source vector (and all columns of

the resistance matrix), we see that the N �N resistance matrix G�1 is full, i.e. will have

N2 nonzero entries.

3



(c) The factorization of the tridiagonal conductance matrix G produces two bidiagonal

factors L and U , such that LU = G. In order to see this, let's examine the �rst few

elimination steps for the matrix G.

After the �rst elimination step we get:

G
(1) =

2
666666664

2G �G 0 � � � 0

0 3G=2 �G
. . .

...

0 �G 2G
. . . 0

...
. . .

. . .
. . . �G

0 � � � 0 �G 2G

3
777777775

And after the second:

G
(2) =

2
666666666664

2G �G 0 � � � � � � 0

0 3G=2
. . .

. . .
...

0 0 4G=3
. . .

. . .
...

...
. . . �G 2G

. . . 0
...

. . .
. . .

. . . �G
0 � � � � � � 0 �G 2G

3
777777777775

Each elimination step targets only one row in the tridiagonal matrix G. In addition, the

triangular block of zeros in the upper-right corner of the matrix remains untouched. Thus

after all N � 1 elimination steps, the L matrix will feature ones on the main diagonal, and

the N � 1 multipliers on the sub-diagonal. The U matrix will also be bidiagonal, with the

pivots on the main diagonal, and �G's on the super-diagonal. It follows that the number

of nonzero entries in L or U is thus N + (N � 1) = 2N � 1.

For N = 1000 the number of nonzero entries in G�1 is 1; 000; 000 while L and U will each

contain only 1999 nonzero entries. It is not a good idea to use the inverse of a matrix

for solving the matrix problem due to the excessive number of required multiplications

proportional to the number of nonzero entries.

(d) Moral - avoid inverting matrices.

5 (a) Structurally A 2 <N�N looks like:

A =

2
66664

1 0 � � � ��
�� 1 � � � 0

. . .
. . .

...

0 � � � �� 1

3
77775

After the �rst step of elimination we get:

4



A
(1) =

2
66666664

1 0 � � � � � � ��
0 1 0 � � � ��2

... �� 1
...

...
. . .

. . . 0

0 � � � � � � �� 1

3
77777775

After N � 1 steps of elimination we have:

A
(N�1) =

2
666666666666666664

1 0 � � � � � � � � � � � � ��

0
. . . ��2

...
. . .

. . .
...

... 0 1 � � � ��k

... 0 1

...
. . .

. . .
... 1 ��N�1

0 �� 1

3
777777777777777775

We will have N � 2 �ll-ins, all in the last column.

We can see that the largest number generated during the elimination is �N . Assuming � is
the largest number representable in our computer, the largest value of N for which A can

be factored without overow satis�es:

j1� �N j < �

or equivalently

N <
log(� + 1)

log�

(b) To avoid overow in the elimination process described, regardless of the size of N we

must use a reordered Gaussian elimination algorithm.

If at each elimination step we choose as pivot the largest element in the column, we are

guaranteed that the multipliers used are smaller than one, therefore causing no growth in

the matrix.

For our problem the sub-diagonal element is always the largest in the column (we are

assuming � > 1). Therefore we exchange rows and get:

A
(1) =

2
66666664

�� 1 � � � � � � 0

1 0 0 � � � ��
... �� 1

...
...

. . .
. . . 0

0 � � � � � � �� 1

3
77777775

5



Eliminating the subdiagonal element in the second row leads to:

A
(1) =

2
66666664

�� 1 � � � � � � 0

0 1=� 0 � � � ��
... �� 1

...
...

. . .
. . . 0

0 � � � � � � �� 1

3
77777775

We can see that there was no growth in the matrix. Furthermore we note that a �ll-in was

created in the diagonal element of the (now) second row. The next step is to eliminate the

sub-diagonal element in the third row. Again our algorithm searches the second column for

the largest element and uses that as a pivot. That leads to exchanging rows again to get:

A
(1) =

2
66666664

�� 1 � � � � � � 0

0 �� 1
...

0 1=� 0 � � � ��
...

. . .
. . . 0

0 � � � � � � �� 1

3
77777775

Clearly the elimination process will again generate no growth in the matrix and one single

�ll-in is generated in the diagonal position of the (now) third row.

Therefore we will again generate N � 2 �ll-ins in the matrix, but avoid overow, regardless
of the size of N .

You may argue that now there will be underow, but in general that is gracefully handled

and is not a problem.

Another interesting solution to the problem (although it hides the general strategy) is to

simply exchange the order of the unknowns and put the last column �rst, to get:

A0 =

2
66666664

�� 1 0 � � � 0

0 �� 1 � � � 0
. . .

. . .

. . . 1

1 0 � � � ��

3
77777775

from where it is clear that direct Gaussian-elimination will produce no growth in the matrix

and will again generate N � 2 �ll-ins (the last row will be �lled in as the elimination

proceeds). You may argue that in this case each �ll-in will be eliminated in the step that

immediately follows its creation, so that in fact we only need storage for a single element,

but zeros created by such exact cancellations are more di�cult to handle than structural

zeros, and so are not usually exploited in sparse matrix codes.

6




