1) Consider the linear system $A x=b$, where

$$
A=\left[\begin{array}{ccc}
10^{-5} & 10^{-5} & 1 \\
10^{-5} & -10^{-5} & 1 \\
1 & 1 & 2
\end{array}\right] \quad b=\left[\begin{array}{c}
2 \times 10^{-5} \\
-2 \times 10^{-5} \\
1
\end{array}\right]
$$

(a) Write the exact solution of the above system
(b) Solve the system using three-digit floating-point arithmetic with partial pivoting.
(c) Solve the system using three-digit floating-point arithmetic with complete pivoting.
2) Consider the following matrix

$$
A=\left[\begin{array}{ccccc}
a_{11} & & a_{13} & a_{14} & \\
& a_{22} & & & a_{25} \\
a_{31} & & a_{33} & & a_{35} \\
a_{41} & & & a_{44} & \\
& & a_{53} & & a_{55}
\end{array}\right]
$$

Assuming that the pivots are restricted to the main diagonal, find the pivoting order if Markowitz reordering is used. How many fill-ins are created?

3(a) Show that the reciprocal of any real number $n>0$ can be found from the recursive relation $x_{k+1}=x_{k}\left(2-n x_{k}\right)$. Suppose the number is π, calculate x_{4} for $x_{0}=0.1$, and $x_{0}=0.7$. Comment on your results.
(b) Suppose the Newton-Raphson method is applied to solve the system of equations $A x=b$. What is the Jacobian matrix? In how many iterations does the method converge? What should x_{0} be for the method to converge?
4) Write code (in your favorite language) that will find the solution of a nonlinear equation in one unknown using Newton's method. To make it a generic procedure the Newton loop should make calls to two functions FX and DX that compute the function and derivative values. Assume $\epsilon_{a}=1 \times 10^{-6}, \epsilon_{r}=1 \times 10^{-3}$. Plot FX and $\left\|x^{k}-x^{*}\right\|$ as a function of the iteration count for the following cases:
(a) $f(x)=x^{2}-1, x^{0}=0.1,0.5,0.9$
(b) $f(x)=x^{2}, x^{0}=1,0.5,0.1$
(c) $f(x)=10^{-3}-10^{-16}\left(e^{40 x}-1\right), x^{0}=0.3,0.5,0.7,0.8$
(d) $f(x)$ as in (a) but using the following function as the derivative of $f(x): f^{\prime}(x)=(f(x+1)-f(x))$. Compare your results with that of (a).

