


Partial Pivoting for Small Pivots
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From: A. Nardi From: A. Sangiovanni-Vincentelli

Error Mechanisms

• Round-off error
– Pivoting helps

• Ill conditioning (almost singular)
– Bad luck: property of the matrix
– Pivoting does not help

• Numerical Stability of Method
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Ill-Conditioning : Norms

• Norms useful to discuss error in numerical 
problems

• Norm ��
� V:
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L2 (Euclidean) norm :
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L� norm :
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Ill-Conditioning : Vector Norms
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Vector induced norm : Ax
x
Ax
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A =  (largest eigenvalue of ATA)1/2

Ill-Conditioning : Matrix Norms
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Ill-Conditioning : Matrix Norms

• More properties on the matrix norm:

• Condition Number:

-It can be shown that:
-Large �(A) means matrix is almost singular (ill-conditioned)
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Perturbation of A due to round off 
in GE when solving Ax=b
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� �(A) large is bad
If matrix is ill-conditioned, then round-off causes 
problems



Perturbation in b
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� �(A) large is bad
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Perturbations in both A and b
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Let � be the machine precision or resolution
Single precision: � � 10-8

Double precision: � � 10-16

For any floating point number a,    is its machine 
representation and
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Numerical Stability

• Even if the algorithm is perfect we still have 
an error in the solution on a computer

• Rounding errors may accumulate and 
propagate in a bad algorithm

• For Gaussian elimination the accumulated 
error is bounded

Growth During Solution
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With Partial Pivoting
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Reorder

Reorder

1 2 3 4 1m	 m

X X
X X X

X X X
X X X

X X X

X X X
X X X

X X
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Circuit Matrices are Sparse 
Example: Line of M Resistors

Tridiagonal Case
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Symmetric
Diagonally Dominant

Nodal Matrix
0

Sparse Matrices – Structural zero
Matrix element that is zero regardless of 

element values
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0

0

Structural zeros: No connection between nodes 2 and 3
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Matrix Non zero structure Matrix after one LU step

X X

Sparse Matrices – Fill-in
Structural zero that becomes nonzero during 

factorization

Fill-in

From: A. Nardi



X X X X
X X 0 0
0 X X 0

X 0 00
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X
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Fill-ins from Step 1 result in Fill-ins in step 2

Fill-ins Propagate   
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3V

Reordering can reduce fill-in

1V 2V
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x x x
x x x
x x x
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Fill-ins
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No Fill-ins

Fill-in and Reordering
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Unfactored Random Matrix Factored Random Matrix
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Very Sparse

Very Sparse

Dense

Pattern of a Filled-in Matrix
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Exploiting and Maintaining Sparsity

• Criteria for exploiting sparsity:
– Minimum number of ops
– Minimum number of fill-ins

• Pivoting to maintain sparsity: NP-complete 
problem 
 heuristics are used
– Markowitz, Berry, Hsieh and Ghausi, Nakhla and 

Singhal and Vlach
– Choice: Markowitz

• Faster

• Pivoting for accuracy may conflict with 
pivoting for sparsity

From: A. Nardi

Where can fill-in occur ?

x x x
x x x
x x x
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M
ultipliers

Already Factored
Possible Fill-in
Locations

Fill-in Estimate = (# NZ in Row -1) (# NZ in Col -1)
Markowitz product

Fill-in and Reordering
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Example of Fill-ins/Markowitz 
Reordering
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Markowitz products

Choose a21 as the pivot










