Equation Formulation $\mathrm{KCL}, \mathrm{KVL}, \mathrm{BCR}$ NA, MNA, STA

$$
A x=b
$$

Solve this system of equations to obtains $x$ for a gwen $b$
Gaussian elimination (GE)


Solution is obtained by backward substitution $\sim_{\frac{n}{2}}^{2}$

What do we do with multiple ' $b$ ' vectors
LU decomposition $\sim \frac{n^{3}}{3}$
Forward/Back substitutions $\frac{\sim n^{2}}{2}$

$$
A x=b \rightarrow L \underbrace{U x_{y}}_{y}=b
$$

$L_{Y}=b$ where $L$ is lower triangular $y$ obtained by forward substitution $U_{x}=y \rightarrow x$ by back subst. Pivoting of the matrix elements

Partial Pivoting for Small Pivots


- ILL Conditioning (almost singular)

Bad Luck

- Numerical Stability of Method

ILL Conditioning


## Error Mechanisms

- Round-off error
- Pivoting helps
- III conditioning (almost singular)
- Bad luck: property of the matrix
- Pivoting does not help
- Numerical Stability of Method


## III-Conditioning: Norms

- Norms useful to discuss error in numerical problems
- Norm $\left\|\|: V \rightarrow \mathfrak{R}^{+}\right.$
(1) $\|x\|>0$ if $x \neq 0, x \in V$
(2) $\|\alpha x\|=\mid \alpha\|x\|$ if $\alpha \in \mathfrak{R}, x \in V$
(3) $\|x+y\| \leq\|x\|+\|y\|$ if $x, y \in V$


## III-Conditioning : Vector Norms

$\mathrm{L}_{2}$ (Euclidean) norm :

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}
$$


$\mathrm{L}_{1}$ norm :

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

$\mathrm{L}_{\infty}$ norm :

$$
\|x\|_{\infty}=\max _{i}\left|x_{i}\right|
$$

## III-Conditioning : Matrix Norms

Vector induced norm :

$$
\|A\|=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}=\max _{\|x\|=1}\|A x\|
$$

$$
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|=\max \text { abs column sum }
$$

$$
\|A\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|=\max \text { abs row sum }
$$

$$
\|\boldsymbol{A}\|_{2}=\left(\text { largest eigenvalue of } A^{T} A\right)^{1 / 2}
$$

## Perturbation of $A$ due to round off in GE when solving $A x=b$

$$
\begin{aligned}
& A \rightarrow A+\delta A \Rightarrow x \rightarrow x+\delta x \\
& (A+\delta A)(x+\delta x)=b \\
& \not 1 x+A \delta x+\delta A x+\delta A \delta x=\not x \\
& A \delta x+\delta A(x+\delta x)=0 \\
& \delta x=-A^{-1} \delta A(x+\delta x) \\
& \|\delta x\| \leq\left\|A^{-1}\right\| \delta A A\|x+\delta x\| \\
& \frac{\|\delta x\|}{\|x+\delta x\|} \leq\left\|A^{-1}\right\| A \| \frac{\|\delta A\|}{\|A\|} \Rightarrow \frac{\|\delta x\|}{\|x+\delta x\|} \leq \kappa(A) \frac{\|\delta A\|}{\|A\|} \\
& \Rightarrow \kappa(\mathrm{A}) \text { large is bad }
\end{aligned}
$$

If matrix is ill-conditioned, then round-off causes problems

## Perturbation in b

$$
b \rightarrow b+\delta b \Rightarrow x \rightarrow x+\delta x
$$

$$
\begin{aligned}
& A(x+\delta x)=b+\delta b \\
& \not A x+A \delta x=\not b+\delta b \\
& A \delta x=\delta b \\
& \delta x=A^{-1} \delta b \\
& \|\delta x\| \leq\left\|A^{-1}\right\|\|\delta b\| \\
& \|\delta x\| \leq\left\|A^{-1}\right\|\|\delta b\| \frac{\|b\|}{\|b\|} \leq\left\|A^{-1}\right\| \frac{\|\delta b\|}{\|b\|}\|A\| x \| \\
& \frac{\|\delta x\|}{\|x\|} \leq\left\|A^{-1}\right\|\|A\| \frac{\|\delta b\|}{\|b\|} \Rightarrow \frac{\|\delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\delta b\|}{\|b\|}
\end{aligned}
$$

$\Rightarrow \kappa(A)$ large is bad

## Perturbations in both $\mathbf{A}$ and $\mathbf{b}$

$$
A \rightarrow A+\delta A \text { and } b \rightarrow b+\delta b \Rightarrow x \rightarrow x+\delta x
$$

Let $\varepsilon$ be the machine precision or resolution
Single precision: $\varepsilon \cong 10^{-8}$
Double precision: $\varepsilon \cong 10^{-16}$
For any floating point number $\mathrm{a}, \overline{\mathrm{a}}$ is its machine representation and $|a-\bar{a}| \leq \varepsilon|a|$

$$
\begin{aligned}
& \|\delta \mathrm{A}\|=\|\mathrm{A}-\overline{\mathrm{A}}\| \leq \varepsilon\|\mathrm{A}\| \\
& \|\delta \mathrm{b}\|=\|\mathrm{b}-\overline{\mathrm{b}}\| \leq \varepsilon\|\mathrm{b}\| \\
& \|\delta \mathrm{x}\|=\|\delta \mathrm{x}\|_{A}+\|\delta \mathrm{x}\|_{b} \leq 2 \varepsilon \kappa(\mathrm{~A})\|\mathrm{x}\|
\end{aligned}
$$

## Numerical Stability

- Even if the algorithm is perfect we still have an error in the solution on a computer
- Rounding errors may accumulate and propagate in a bad algorithm
- For Gaussian elimination the accumulated error is bounded


## Growth During Solution

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
0.1 & & & & 1 \\
1 & 0.1 & & & 1 \\
& 1 & 0.1 & & 1 \\
& & 1 & 0.1 & 1 \\
& & & 1 & 0.1
\end{array}\right] \xrightarrow{\text { Step 1 }}\left[\begin{array}{ccccc}
0.1 & & & & 1 \\
0 & 0.1 & & & -9 \\
& 1 & 0.1 & & 1 \\
& & 1 & 0.1 & 1 \\
& & & & 1 \\
\hline
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
0.1 & & & & 1 \\
0 & 0.1 & & & -9 \\
& 0 & 0.1 & & 91 \\
& & 1 & 0.1 & 1 \\
& & & 1 & 0.1
\end{array}\right] \xrightarrow[\text { SE 3 }]{\longleftrightarrow}\left[\begin{array}{ccccc}
0.1 & & & & 1 \\
0 & 0.1 & & & -9 \\
& 0 & 0.1 & & 91 \\
& & 0 & 0.1 & -909 \\
& & & 1 & 0.1
\end{array}\right]}
\end{aligned}
$$

## With Partial Pivoting

$\left[\begin{array}{ccccc}0.1 & & & & 1 \\ 1 & 0.1 & & & 1 \\ & 1 & 0.1 & & 1 \\ & & 1 & 0.1 & 1 \\ & & & 1 & 0.1\end{array}\right] \xrightarrow[\text { Reorder }]{ }\left[\begin{array}{ccccc}1 & 0.1 & & & 1 \\ 0.1 & 0 & & & 1 \\ & 1 & 0.1 & & 1 \\ & & 1 & 0.1 & 1 \\ & & & 1 & 0.1\end{array}\right]$
$\left[\begin{array}{ccccc}1 & 0.1 & & & 1 \\ 0 & -0.01 & & & 0.9 \\ & 1 & 0.1 & & 1 \\ & & 1 & 0.1 & 1 \\ & & & 1 & 0.1\end{array}\right] \xrightarrow[\text { Reorder }]{ }\left[\begin{array}{ccccc}0.1 & & & & 1 \\ 0 & 1 & 0.1 & & 1 \\ & -0.01 & 0 & & 0.9 \\ & & 1 & 0.1 & 1 \\ & & & 1 & 0.1\end{array}\right]$

Matrix element that is zero regardless of



Symmetric
Diagonally Dominant

Circuit Matrices are Sparse Example: Line of $M$ Resistors

$\boldsymbol{m}\left[\begin{array}{llllllllll}\mathrm{x} & \mathrm{x} & & & & & & & \\ \mathrm{x} & \mathrm{x} & \mathrm{x} & & & & & & \\ & & \mathrm{x} & \mathrm{x} & \mathrm{x} & & & & & \\ & & \mathrm{x} & \mathrm{x} & \mathrm{x} & & & & \\ & & & \mathrm{x} & \mathrm{x} & \mathrm{x} & & & \\ & & & & \ddots & \ddots & \ddots & & \\ & & & & & \mathrm{x} & \mathrm{x} & \mathrm{x} & \\ & & & & & & \mathrm{x} & \mathrm{x} & \mathrm{x} \\ & & & & & & \mathrm{x} & \mathrm{x}\end{array}\right] \quad$ Tridiagonal Case

## Sparse Matrices - Fill-in

Structural zero that becomes nonzero during factorization

Matrix Non zero structure Matrix after one LU step


Fill-ins Propagate


Fill-ins from Step 1 result in Fill-ins in step 2

Fill-in and Reordering


Reordering can reduce fill-in


Factored Random Matrix


## Pattern of a Filled-in Matrix



## Exploiting and Maintaining Sparsity

- Criteria for exploiting sparsity:
- Minimum number of ops
- Minimum number of fill-ins
- Pivoting to maintain sparsity: NP-complete problem $\rightarrow$ heuristics are used
- Markowitz, Berry, Hsieh and Ghausi, Nakhla and Singhal and Vlach
- Choice: Markowitz
- Faster
- Pivoting for accuracy may conflict with pivoting for sparsity


## Example of Fill-ins/Markowitz Reordering

\(\left[\begin{array}{llll}1 \& 1 \& 1 \& 1 <br>
1 \& 1 \& 0 \& 0 <br>
0 \& 1 \& 1 \& 0 <br>

0 \& 1 \& 1 \& 1\end{array}\right]\) | 4 |
| :--- |
| 2 | 4

Choose $\mathrm{a}_{21}$ as the pivot

Tie breaking criterion
NZUR $=$ \# of non zeros in an upper triangular row including the diagonal
NZLC $=\#$ of non zeros in a lower triangular column including the diagonal
Markowitz : 1) $\min$ (NZUR-1) (NZLC-1)
~ 1950
Berry: 1) min fill-is $\leftarrow$ actual fullin
2) $\max$ NZUR
3) $\max$ NZLC

Hsieh:

1) Row singleton
2) Column ", $\quad(N Z L C=1)$
3) $(N Z \cup R, N Z L C)=(2,2),(2,3)$, $(2,4),(4,2),(3,3)$
4) $\min (N Z \cup R-1)(N Z L C-1)$
5) max NzLC

Nakhla:

1) $m$ in $f(l-i n$
2) $\min ^{-}$NZUR
3) min $N Z L C$

MNA formulation (exploiting the matrix structure)

Have a' singleton in a row
$\Rightarrow$ excellent choice for a Markowitz prot (Markowitz count $=0$ )
However, this singleton doesn't exist on a diagonal
$\Rightarrow$ preorden for MNA matrices


$$
\begin{gathered}
v_{1} \\
{\left[\begin{array}{cccc}
G_{1} & -G_{1} & 1 & 0 \\
-G_{1} & G_{1} & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]} \\
2-4
\end{gathered}
$$

Swap rows $1 \times 3,264$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
G_{1} & -G_{1} & 1 & 0 \\
-G_{1} & G_{1} & 0 & 1
\end{array}\right]
$$

SPICE Pivoting Strategy

1) Choose "Markowitz element on main diagonal $a_{M}$
2) Check with the largest element in column $\left|a_{\text {max }}\right|$
if $\left|a_{M}\right|<\epsilon_{a}+\epsilon_{r}\left|a_{\max }\right|$ reject pivot $\begin{array}{ccc}\text { 个 } & \text { 个IVTOL } & \text { pIVREL } \\ 10^{-13} & 10^{-3} & \text { and go back }\end{array}$
If all elements on diagonal farl test, select pivot outside diagonal

$$
G M I N=10^{-12}
$$

If GMIN is reduced the pIVTol should also be reduced

Working with sparse matrices

$$
n=1000
$$

dense matrix $1000 \times 1000 \quad 10^{6}$ numbers
$\rightarrow 8 \mathrm{MB}$ of storage
Gaussian elimination $\sim n^{3}$ operations

$$
10^{9} \text { flops }
$$

If we exploit sparsity:
store only the nonzero terms of the matrix MNA matncès $\sim 3$ nonzeros/row $\sim 3000$ nouzeros
GE $\sim n^{1.1}-n^{1.5}$ or $2 k-32 k$ flops
Need to work with sparse matrix techniques

- do not store zeros (use special data structure.)
- Avoid trivial operations $0 x=0,1 x=x$ $0+x=x$..,
- avoid loosing sparsity

Example

$$
\begin{aligned}
A & =\left[\begin{array}{cccc}
5 & 3 & 0 & 1 \\
7 & 1 & 0 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & {\left[\begin{array}{c}
0 \\
-1
\end{array}\right.} & 0 \\
\hline & & {\left[\begin{array}{c}
1 \\
5 \\
3 \\
1 \\
7 \\
1 \\
2 \\
3 \\
-1 \\
5 \\
2
\end{array}\right]} & {\left[\begin{array}{l}
1 \\
1 \\
1 \\
2 \\
2 \\
3 \\
3 \\
4 \\
4 \\
4
\end{array}\right]}
\end{array} \begin{array}{c}
1 \\
2 \\
4 \\
1 \\
2 \\
2 \\
3 \\
1 \\
3
\end{array}\right]
\end{aligned}
$$

Bidirectional Threaded List


In $C$ language

$$
\begin{aligned}
& \text { Element }=\text { struck } \xi \\
& \text { double value } \\
& \begin{array}{ll}
\text { int row } \\
\text { int col }
\end{array} \\
& \text { Pare (Element) * next In } \mathrm{Col} \\
& \text { pr (Elemeur) * next In Row }
\end{aligned}
$$

Functions:
Create Element (Matrix, Row, Col) - creates and splices a new element us Matrix
get Element (Matrix, Row, Col)

- return element it it exists otherwise calls creak element Creak Fill in (Matrix, Row, Col) - creates a fill-in

Exchange Row And Col (Matrix, Row, Row 2,
$\left.C_{011}, C_{012}\right)$ Coll, $\mathrm{COl}_{2}$ )

