












Review of Solution of Linear 
Equations Ax = b

• Gaussian Elimination
– LU factorization (A=LU) followed by forward and backward 

solves
– Pivoting for accuracy
– Error mechanisms (round-off)

• Ill-conditioning
• Numerical stability

– Complexity: O(N3)
• Gaussian Elimination for sparse matrices 

– Improved computational cost: O(N1.1-N1.5) and reduced 
storage

– Data structures
– Pivoting for sparsity (Markowitz reordering) and accuracy

Solving Linear Systems

• Direct methods: find the exact solution in a 
finite number of steps
– Gaussian Elimination

• Iterative methods: produce a sequence of 
approximate solutions that hopefully 
converge to the exact solution
– Stationary

• Gauss-Jacobi
• Gauss-Seidel
• SOR (Successive Overrelaxation Method)

– Non Stationary
• GCR, CG, GMRES…..
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Iterative Methods

Iterative methods can be expressed in the 
general form: 

x(k) =F(x(k-1))
where k is the iteration index: k = 1, 2, 3, …
Hopefully: x(k) � x* (solution of my problem)

• Will the method converge? 
• If so, how quickly?

Classification of Iterative Methods

Stationary:
x(k+1) =Gx(k)+c
where G and c do not depend on iteration count (k)

Non Stationary:
x(k+1) =x(k)+akp(k)

where computation uses information that changes at 
each iteration
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Nonlinear Equations – Iterative 
Methods

• Start from an initial value x0

• Generate a sequence of iterates xn-1, xn, xn+1

which hopefully converges to the solution x*
• Iterates are generated according to an 

iteration function F: xn+1=F(xn)

Ask
• When does it converge to the correct solution ?
• What is the convergence rate ?
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Newton-Raphson (NR) Method
Consists of linearizing the system

Want to solve f(x)=0 � Replace f(x) with its linearized 
version and solve

Note: at each step need to evaluate f and f’
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Newton-Raphson Method – Graphical View

From: A. Nardi

Newton-Raphson Method 
Algorithm

Define iteration
Do k = 0 to ….

until convergence

• How about convergence?
• An iteration {x(k)} is said to converge with order q if

there exists a vector norm such that for each k  N:
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Remainder form: Taylor series
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Convergence of Newton Method
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Subtracting
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Convergence of Newton Method
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Convergence of Newton Method

Local Convergence Theorem

If

Then Newton’s method converges given a 
sufficiently close initial guess (and convergence is 
quadratic)
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Example
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Example

*kx x�
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Convergence is 
quadratic

Example 1
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Example 2
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Convergence of Examples 1, 2
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Convergence Check for Newton 
Method
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Need to check  f(x) to avoid false convergence
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Check        close to zero valuef(x)

Need to check  delta-x to avoid false convergence
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Nodal Analysis
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Two coupled 
nonlinear equations

in two unknowns

Nonlinear Problems – Multidimensional 
Example
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