


Simulation of  Radio Frequency 
Integrated Circuits

Based on:

• K. Mayaram, D. C. Lee, S. Moinian, D. A. Rich, and J. 
Roychowdhury, “Computer-Aided Circuit Analysis Tools for 
RFIC Simulation: Algorithms, Features, and Limitations,” 
IEEE Trans. CAS-II, April 2000.

• Slides from Yutao Hu, Volodymr Kratyuk, Xiaochun Duan, and 
Igor Vytyaz

Outline

• Time-domain Periodic Steady State 
Analysis (PSS)
– Shooting method
– Oscillator simulation

• Frequency-domain PSS
– Harmonic balance method 

• Single tone, two tone
– Oscillator simulation

• Noise in nonlinear circuits
– Oscillator phase noise analysis

Time-Domain Method

• Impose periodicity constraint
v(0) = v(T)

• For a driven circuit period T is known
• For an oscillator T is an unknown
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• Periodicity constraint

Time-Domain Shooting Method

� Two-point boundary value problem:
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• Solve using Newton’s algorithm

Time-Domain Shooting Method

where when T is fixed

is the identity matrix
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– Final state Xi(T) is obtained by one period 
transient

– Sensitivity matrix J has initial value I and is 
computed in the one period transient

– For autonomous systems, period T is an unknown

Solution Procedure

Modifications and heuristics for efficiency and 
convergence reliability

0X

Transient simulation for 
one period of T to obtain 

Xi(T)
Iteration 
Equation 
to solve 
Xi+1(0)

*X

Newton Loop

Compute sensitivity matrix 
at each time point to obtain 

Ji

Implementation Considerations

• Heuristics for autonomous systems (oscillators)
– Period (T) is an unknown
– Three period transient without Newton’s iteration 

in the beginning to eliminate fast transients in the 
circuit

– Sensitivity computed when error below a 
threshold

– Damped Newton’s iteration
– �T is limited to 10% of current period

• Frequency multiplier
– Shooting method: 6 periods
– Conventional transient: 1500 periods

Examples and Results



Example

• Switched capacitor 5th-order elliptic filter
– 245 MOSFETs, 171 nodes
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Example 
circuits 

Conventional 
transient simulation 

(# of periods) 

Time-domain 
steady-state method 

(# of periods) 
DC supply 80 6 

CB amplifier 30 4 
EC xfrmr osc. 185 25 
Freq. Multiplier 1500 6 

LC EC osc 22 9 
SCP amplifier 182 6 
H.F. Colpitts 20 12 
L.F. Colpitts 84 18 
Demodulator 12000 4 

Time-domain steady-state method is 
efficient

Oscillator Periodic Steady-state 
analysis

• Problem formulation

or

• In autonomous systems (oscillators):
– T is an unknown
– Hence, n equations in n+1 unknowns
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Solution for oscillators

• Add an extra equation:
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Solution for oscillators

• Impose constraints for the added equation:
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Graphical solution for oscillators

x(0)T

min qTx(t)

max qTx(t)

qT x=a

q
q

x1

x2

x(0)

0

Non-Linear Frequency Domain Analysis

• Low distortion signals require few Fourier 
series coefficients

• Smooth device models are essential for RF

Harmonic Balance

• Time-derivatives (capacitors) become 
multiplication in frequency domain

• Handle distributed elements in freq. domain

• “Balance” the frequency 
spectrum at each node



Multi-Tone Frequency Domain Analysis

• Minimum number of “time-domain” samples 
dictated by the number of significant Fourier 
coefficients, not by the Nyquist rate

Frequency Truncation

• Harmonic truncation
– keep a finite number of frequencies 

containing significant energy

f

One-tone spectrum

f

Two-tone spectrum

Harmonic Balance: Summary

• Conventional HB simulators
– Small circuits
– Large memory requirements
– Not well suited for RFIC simulation

• State-of-the Art (Univ. of Bremen, Bell Labs)
– Circuits with tens to hundreds of transistors
– Sophisticated IC device models
– Run time and memory required almost linear 

with size of circuit and number of Fourier 
coefficients

Harmonic Balance Method
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• Truncated Fourier series approximation of x(t)

• For 2s+1 time samples x0...x2s
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Harmonic Balance Method

0s(t)t)q(x(t),
dt
dt)i(x(t), ���

• System equation in time domain:

– x(t) the vector of circuit waveforms
– i is a vector of contributions from  

nonreactive elements
– q is a vector of contributions from 

reactive elements
– s stimulus vector

Harmonic Balance Method

• Frequency-domain representation
0SX)��q(�X)�i(� 11 ��� ��

Where � is representation of derivative operation
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• Jacobian matrix in Newton iteration

X��C�X�G� 11 �� �

Two Tone Harmonic Balance Method

• Frequency-remapping for multi-tone analysis
– To use standard DFT
– Fourier coefficients of function independent of 

the actual values of frequencies
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Two Tone Harmonic Balance Method

• Frequency-remapping to integer frequencies

Original f

Integer f

Integer 
frequency 

Original 
frequency 

0 0*f1+0*f2 
1 0*f1+1*f2 
2 0*f1+2*f2 
3 1*f1-2*f2 
4 1*f1-1*f2 
5 1*f1+0*f2 
6 1*f1+1*f2 
7 1*f1+2*f2 
8 2*f1-2*f2 
9 2*f1-1*f2 
10 2*f1+0*f2 
11 2*f1+1*f2 
12 2*f1+2*f2 



Two-Tone Harmonic Truncation Methods

K2(f2)

K1(f1)

(a) box truncation            (b) diamond truncation

K2(f2)

K1(f1)

Examples and Results

• Simple rectifier

– 30 harmonics
– No. of iterations=16
– Result verified by 

transient simulation

Examples and Results

• A single-BJT mixer circuit
– 27 frequencies chosen by box truncation
– Harmonic balance method takes 11 iterations
– Transient analysis is impractical

fLO=500MHz, fRF=499.9MHz
output filter: Q=100, fcenter=100KHz
Fundamental of this mixer: 100KHz
The fifth harmonic of LO: 2500MHz

� 50,000 time points per cycle
X many cycles needed by high Q output filter

Examples and Results

• MOSFET common source tuned amplifier

– 10 harmonics
– No. of iterations=6
– Result verified by 

transient simulation



Oscillator Simulation with HB
• Problems

– Unknown period of oscillation
– Arbitrary time origin

• Solutions (K. Kundert, 1990)
– Frequency as an additional unknown
– Additional equation to fix phase

– Direct implementation convergence 
problems
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Use Voltage Probe

E.Ngoya, Int.J. Microw. Milim.-wave CAE,1995

• Convergence criterion
– Probe current equals 

zero

• Advantages
– Autonomous circuit

forced circuit

Oscillator Vprobe

Iprobe
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Two-Level Newton Method

• Bottom Level:  Voltage Probe Forced 
Circuit

• Top Level: Probe Equation
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Initial Condition – Sinusoidal Oscillators

– Pole-zero analysis 
for initial frequency

– Probe voltage 
swept at a fixed 
frequency for initial 
probe voltage

• Initial guess for oscillation frequency and 
probe voltage

f pz: frequency from pole-zero analysis
fosc: actual oscillation frequency

0 1 2 3 4 50

0.5

1

1.5
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3.5x 10-4
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Difficulty with High Q Oscillator

– Problem: Hard to get initial guess for probe 
voltage

– Solution: Method requiring no initial guess

0 2 4 6 8 100

0.01

0.02

0.03

0.04

0.05

0.06

Vprobe

Ip
ro

be

f pz

fosc

fpz / fosc=1.00103

Homotopy Methods

� Original Problem

� Homotopy

� Key for convergence
– Properly embed �

F: Rn     RnF(X)=0

H: Rn× R RnH(X, �)=0

�=0 : H(X,0)=G(X) Easy solution

�=1 : H(X,1)=F(X) Original problem

Homotopy Formulation for Oscillators

� Original equation

� Homotopy  map

Vinit (�init) : probe voltage (frequency) initial 
value
g1,g2 : scaling factors
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Example: Pierce Oscillator

Two-level method fails

C1 C2

Cc

+
–

Cp

R1

Crystal
LcRc

R2

Cc

Vcc

Q=2.5 104

M.Gourary et al, Comput. Methods Appl. Mech. Engr, 
2000

� Voltage probe at 
BJT collector node
– Vinit : DC value
– finit : fpz



Solution Traces

� Robust: Tracking turning point properly
� Slow: Large number of � steps (>1000)
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High-Q Oscillator Examples

Two-level method fails for these circuits

Circuit Q fo (MHz) fpz /fo
#

Steps
#Iter

CPU 
time 
(sec)

Colpitts 1.00 103 1.5915 0.99987 11 208 17.5

TNT 1.02 103 11.795 0.84738 15 492 26.3

Pierce (BJT) 1.07 104 4.0811 0.97036 10 241 13.2

Pierce1 
(MOS)

3.69 104 7.9992 0.99907 5 98 8.2

Clapp 1.14 105 20.124 0.99998 12 243 19.2

Pierce2 
(MOS)

2.82 105 1.1256 0.99995 26 403 141

Comparison of Homotopy Method 
with Two-level Method

Circuit
# Iterations CPU time (sec)

Two-level Homotopy Two-level Homotopy

Colpitts (BJT) 63 197 1.6 5.2

TNT 243 310 12.6 23.4

Wien 93 274 6.1 14.5

Sony 88 170 5.6 12.1

Phase shift 57 307 23.9 127.2

Source coupled 74 358 12.8 60.1

Cross coupled 69 398 3.1 20.8

Colpitts (MOS) # x 172 x 854.4

Sony # x 593 x 581.2

#: circuit with numerical models, x: no convergence 

Difficulty with Ring Oscillator

Oscillation with 
voltage/current 

thresholds

Bottom-level circuit waveform during the 
Newton iterative process

Divergence with a small 
damping factor



0 5 10 15 20 25 30 35
10

-5

10
0

10
5

No. of Hamronics

M
ag

ni
tu

de
 (

V
)

Result from Tran
Result from HB

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

x 10
-8

0

1

2

3

4

5

Time (Sec)

V
ol

ta
ge

 (
V

) Result from Tran
Result from HB

Examples and Results
• 9 stage single-ended ring oscillator

Robust Harmonic Balance Method for 
Oscillators

• Homotopy-based harmonic balance 
method for high-Q oscillator 
simulation

• Single delay cell equivalent circuit  
for ring oscillator simulation with 
identical delay cells

• Multiple-probe method for general 
ring oscillator simulation

Mixing Noise

• Up/down conversion of noise due to mixing 

• SPICE noise analysis does not work
• Cyclostationarity/frequency correlation 

important
• Monte Carlo or stochastic methods

Noise Analysis Methods

• Monte Carlo Methods
– OK for arbitrarily large noise
– Inaccurate for small noise
– Time consuming

• Stochastic Methods
– Mainly used for small noise
– Can be very efficient and accurate



Noise in a Switching Mixer Ideal and Noisy Oscillators

• Ideal

• Noisy

– Noise characterization
• Timing jitter
• Phase noise

• Ideal

Timing Jitter and Phase Noise

• Timing jitter
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The Effect of the Local Oscillator Phase Noise

PSD
of RF

frequencyfRF

fLO

fIF

Adjacent Channel
Desired
Signal

Desired
Signal

Noise

Noise

frequency

frequency

PSD
of LO

PSD
of IF

Noisy oscillators

j(t) C L

Vout

t'

�V

j(t)

t

(� t �' 

'

Vout

t'
�V

• Noise can perturb both the amplitude and 
phase of an oscillator

Phase Noise

• Important for adjacent channel interference, 
data recovery, and sampled data systems

• Mixing noise methods can handle phase noise 
away from carrier
– Inaccurate close to carrier

• Most analyses are of specific oscillators under 
simplifying assumptions

• New methods for proper phase noise 
calculation available in Spectre-RF, Eldo-RF

Methods for  Phase noise Calculation

Hajimiri & Lee Theory:
• Only transient 

analysis is needed for 
the simulations

• Transient analysis is 
needed for each node 
perturbed by noise

• Impulse sensitivity 
function (ISF) has to 
be extracted using 
post processing

Demir’s Theory:
• Require only steady-

state solution
• Allows for efficient 

simulation of large 
circuits

• The contribution of 
each noise source can 
be obtained easily

• Difficult to implement if 
a steady-state analysis 
is not available



Phase Noise Equations

• A system of DAEs for a circuit with noise sources

• Single-sideband phase noise spectrum in dBc/Hz
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A. Demir et al., “Phase noise in oscillators: a unifying theory and 
numerical methods for characterization,” IEEE Trans. CAS-I, May 2000
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circuit currents currents from white
noise sources

currents from colored
noise sources

• Effect of a perturbation on oscillator
– Phase deviation is zero

Perturbation projection vector (PPV)

0

– Phase deviation persists

• Perturbation projection vector (PPV) 

• PPV facilitates accurate phase noise computation

�)**= 0

�)**< 0

v1 ( t ) + �)

xs( t )

xs( t )

Perturbation Projection Vector (PPV)
• Periodic vector

– Transfer function from noise sources to phase 
noise

– Similar to Hajimiri and Lee’s impulse 
sensitivity function (ISF)

Less sensitive 
to noise

More sensitive 
to noise

PPV in the time domain

PPV at 2PPV at 1
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� PPV is a transfer 
function from noise 
source to phase

� Phase noise is area 
under PPV2*, noise 
curve



PPV in the frequency domain
• Flicker noise up-conversion

– due to DC term of PPV
• High frequency noise gets folded

– due to harmonics of PPV

Practical implication of PPV
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• Mapping vector for colored noise sources 
has to be calculated for each frequency of 
interest



Phase Noise Analysis Implementation

Monodromy matrix calculation

Complete
eigenvector/eigenvalue analysis

Choose eigenvector
coresponding to eigenvalue one

PPV calculation

Scalar c calculation

Phase noise calculation

Phase noise analysis

Temporary storage:
Bw, Bcm, C, G, xs

at each time point

C & G

C, xs

C & G

Bw, Bcm

Transient analysis

1
2
:

n-10
:

n-5
:
:

n-1
n

# of
periods

Usual transient

Find period
of oscillation T

xs(t)

t
T

Measured RMS jitter of 1.4 GHz PLL  

magnitude of DC of supply PPV

RMS jitter with Vdd noise at  10  MHz

RMS jitter with Vdd noise at    1  MHz
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� PPV-based prediction agrees with measurement


