Simulation of Radio Frequency Integrated Circuits

Based on:

- K. Mayaram, D. C. Lee, S. Moinian, D. A. Rich, and J. Roychowdhury, "Computer-Aided Circuit Analysis Tools for RFIC Simulation: Algorithms, Features, and Limitations," IEEE Trans. CAS-II, April 2000.
- Slides from Yutao Hu, Volodymr Kratyuk, Xiaochun Duan, and Igor Vytyaz

Outline

- Time-domain Periodic Steady State Analysis (PSS)
 - Shooting method
 - Oscillator simulation
- Frequency-domain PSS
 - Harmonic balance method
 - Single tone, two tone
 - Oscillator simulation
- Noise in nonlinear circuits
 - Oscillator phase noise analysis

Time-Domain Method

Impose periodicity constraint

- For a driven circuit period T is known
- · For an oscillator T is an unknown

Time-Domain Shooting Method

- Periodicity constraint
 - \Rightarrow Two-point boundary value problem:

X(0) - X(T, X(0)) = 0

Time-Domain Shooting Method

Solve using Newton's algorithm

 $X^{i+1}(0) = X^{i}(0) - [I - J^{i}]^{-1}[X^{i}(0) - X^{i}(T)]$

where

 $J^{i} = \frac{\partial X^{i}(T, X(0))}{\partial X^{i}(0)} \quad \text{ when } T \text{ is fixed}$

 \boldsymbol{I} is the identity matrix

- Final state $X^{i}(T)$ is obtained by one period transient
- Sensitivity matrix *J* has initial value *I* and is computed in the one period transient
- For autonomous systems, period T is an unknown

Implementation Considerations

- Heuristics for autonomous systems (oscillators)
 - Period (T) is an unknown
 - Three period transient without Newton's iteration in the beginning to eliminate fast transients in the circuit
 - Sensitivity computed when error below a threshold
 - Damped Newton's iteration
 - $-\,\Delta T$ is limited to 10% of current period

Solution Procedure

Modifications and heuristics for efficiency and convergence reliability

Examples and Results

- Frequency multiplier
 - Shooting method: 6 periods
 - Conventional transient: 1500 periods

Example

Switched capacitor 5th-order elliptic filter

Time

Time-domain steady-state method is efficient

Example	Conventional	Time-domain		
circuits	transient simulation	steady-state method		
	(# of periods)	(# of periods)		
DC supply	80	6		
CB amplifier	30	4		
EC xfrmr osc.	185	25		
Freq. Multiplier	1500	6		
LC EC osc	22	9		
SCP amplifier	182	6		
H.F. Colpitts	20	12		
L.F. Colpitts	84	18		
Demodulator	12000	4		

Oscillator Periodic Steady-state analysis

Problem formulation

or

x(0) = x(T)

 $x(0) = \Phi(x(0), 0, T)$

- In autonomous systems (oscillators):
 - T is an unknown
 - Hence, n equations in n+1 unknowns

Solution for oscillators

• Add an extra equation:

$$\begin{cases} x(0) = \Phi(x(0), 0, T) \\ q^T x(0) = a \end{cases}$$

Solution for oscillators

• Impose constraints for the added equation:

$$\begin{cases} \max_{t} q^{T} x(t) > a \\ \min_{t} q^{T} x(t) < a \\ q^{T} \frac{dx(0)}{dt} \neq 0 \end{cases}$$

Graphical solution for oscillators

Non-Linear Frequency Domain Analysis

- Low distortion signals require few Fourier series coefficients
- Smooth device models are essential for RF

Harmonic Balance

- "Balance" the frequency spectrum at each node
- Time-derivatives (capacitors) become multiplication in frequency domain
- Handle distributed elements in freq. domain

Multi-Tone Frequency Domain Analysis

 Minimum number of "time-domain" samples dictated by the number of significant Fourier coefficients, not by the Nyquist rate

Harmonic Balance: Summary

- Conventional HB simulators
 - Small circuits
 - Large memory requirements
 - Not well suited for RFIC simulation
- State-of-the Art (Univ. of Bremen, Bell Labs)
 - Circuits with tens to hundreds of transistors
 - Sophisticated IC device models
 - Run time and memory required almost linear with size of circuit and number of Fourier coefficients

Frequency Truncation

- Harmonic truncation
 - keep a finite number of frequencies containing significant energy

Harmonic Balance Method

Truncated Fourier series approximation of x(t)

$$\mathbf{x}(t) \approx \mathbf{a}_0 + \sum_{i=1}^{s} (\mathbf{a}_i \cos(\omega_i t) + \mathbf{b}_i \sin(\omega_i t))$$

For 2s+1 time samples x₀...x_{2s}

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_{0} \\ \mathbf{x}_{1} \\ \vdots \\ \mathbf{x}_{2s} \end{bmatrix} = \begin{bmatrix} 1 & \cos(\omega_{1}t_{0}) & \cdots & \sin(\omega_{s}t_{0}) \\ 1 & \cos(\omega_{1}t_{1}) & \cdots & \sin(\omega_{s}t_{1}) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \cos(\omega_{1}t_{2s}) & \cdots & \sin(\omega_{s}t_{2s}) \end{bmatrix} \begin{bmatrix} \mathbf{a}_{0} \\ \mathbf{a}_{1} \\ \vdots \\ \mathbf{b}_{s} \end{bmatrix} = \Gamma^{-1} \mathbf{X}$$

Harmonic Balance Method

System equation in time domain:

 $i(x(t), t) + \frac{d}{dt}q(x(t), t) + s(t) = 0$

- -x(t) the vector of circuit waveforms
- is a vector of contributions from nonreactive elements
- q is a vector of contributions from reactive elements
- s stimulus vector

Harmonic Balance Method

Frequency-domain representation

 $\Gamma i(\Gamma^{-1}X) + \Omega \Gamma q(\Gamma^{-1}X) + S = 0$

Where $\boldsymbol{\Omega}$ is representation of derivative operation

$$\Omega = \begin{bmatrix} 0 & & \\ & \varpi_1 & \\ & & \ddots & \\ & & & \varpi_s \end{bmatrix}, \quad \varpi_i = \begin{bmatrix} 0 & \omega_i \\ -\omega_i & 0 \end{bmatrix}$$

• Jacobian matrix in Newton iteration

 $\Gamma G \Gamma^{-1} X + \Omega \Gamma C \Gamma^{-1} X$

Two Tone Harmonic Balance Method

- Frequency-remapping for multi-tone analysis
 - To use standard DFT
 - Fourier coefficients of function independent of the actual values of frequencies

$$\begin{split} & (\widehat{U}_{0} - \widehat{U}_{N}) = \widehat{\Gamma}i(\widehat{\Gamma}^{-1}V) \qquad \Gamma q(\Gamma^{-1}V) = \widehat{\Gamma}q(\widehat{\Gamma}^{-1}V) \\ & (\widehat{U}_{0} \cdots \widehat{U}_{s}) \xrightarrow{\text{remapping}} (\widehat{U}_{0} \cdots \widehat{U}_{s}) \\ & \quad \widehat{\Gamma}i(\widehat{\Gamma}^{-1}X) + \widehat{\Omega}\widehat{\Gamma}q(\widehat{\Gamma}^{-1}X) + S = 0 \end{split}$$

Two Tone Harmonic Balance Method

Integer	Original
frequency	frequency
0	0*f1+0*f2
1	0*f1+1*f2
2	0*f1+2*f2
3	1*f1-2*f2
4	1*f1-1*f2
5	1*f1+0*f2
6	1*f1+1*f2
7	1*f1+2*f2
8	2*f1-2*f2
9	2*f1-1*f2
10	2*f1+0*f2
11	2*f1+1*f2
12	2*f1+2*f2

• Frequency-remapping to integer frequencies

Two-Tone Harmonic Truncation Methods

Examples and Results • Simple rectifier

Examples and Results

- A single-BJT mixer circuit
 - 27 frequencies chosen by box truncation
 - Harmonic balance method takes 11 iterations
 - Transient analysis is impractical

 $\begin{array}{l} f_{\text{LO}} = 500 \text{MHz}, \ f_{\text{RF}} = 499.9 \text{MHz} \\ \text{output filter: } \text{Q} = 100, \ f_{\text{center}} = 100 \text{KHz} \\ \text{Fundamental of this mixer: } 100 \text{KHz} \\ \text{The fifth harmonic of LO: } 2500 \text{MHz} \\ \Rightarrow 50,000 \ \text{time points per cycle} \\ \text{X many cycles needed by high Q output filter} \end{array}$

Examples and Results

MOSFET common source tuned amplifier

- 10 harmonics
- No. of iterations=6
- Result verified by transient simulation

Oscillator Simulation with HB

Problems

- Unknown period of oscillation
- Arbitrary time origin
- Solutions (K. Kundert, 1990)
 - Frequency as an additional unknown
 - Additional equation to fix phase

$$\begin{split} F(X,\omega) &= \Gamma i(\Gamma^{-1}X) + \Omega(\omega) \Gamma q \ (\Gamma^{-1}X) + S = 0 \\ X^s_m(1) &= 0 \end{split}$$

 Direct implementation ⇒ convergence problems

Use Voltage Probe


```
E.Ngoya, Int.J. Microw. Milim.-wave CAE,1995
```

Two-Level Newton Method

 Bottom Level: Voltage Probe Forced Circuit

 $\begin{bmatrix} \mathbf{J} & \mathbf{e}_{m}^{c}(1) & \mathbf{e}_{m}^{s}(1) \\ \mathbf{e}_{m}^{c}(1)^{\mathsf{T}} & \mathbf{0} & \mathbf{0} \\ \mathbf{e}_{m}^{s}(1)^{\mathsf{T}} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{X}^{(j+1)} \\ \mathbf{I}_{probe}^{c(j+1)} \\ \mathbf{I}_{probe}^{s(j+1)} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{RhsF} \\ \mathbf{V}_{probe} \\ \mathbf{0} \end{bmatrix}$

• Top Level: Probe Equation

$$I^{c}_{probe}(V_{probe,}\omega) = 0$$

 $I^{s}_{probe}(V_{probe,}\omega) = 0$

Initial Condition – Sinusoidal Oscillators

- Initial guess for oscillation frequency and probe voltage
 - Pole-zero analysis for initial frequency
 - Probe voltage swept at a fixed frequency for initial probe voltage

f $_{pz}$: frequency from pole-zero analysis f $_{osc}$: actual oscillation frequency

Difficulty with High Q Oscillator

- Problem: Hard to get initial guess for probe voltage
- Solution: Method requiring no initial guess

Homotopy Methods

Original Problem

F(X)=0
F: Rⁿ→Rⁿ

Homotopy

H(X, λ)=0
H: Rⁿ× R → Rⁿ
λ=0: H(X,0)=G(X) → Easy solution
λ=1: H(X,1)=F(X) → Original problem

Key for convergence

Properly embed λ

Homotopy Formulation for Oscillators

• Original equation $I_{probe}^{c}(V_{probe}, \omega) = 0$ $I_{probe}^{s}(V_{probe}, \omega) = 0 \Rightarrow \frac{I_{probe}^{c}(V_{probe}, \omega)}{V_{probe}} = 0$ $I_{probe}^{s}(V_{probe}, \omega) = 0$ • Homotopy map $I_{probe}^{c}(V_{probe}, \omega, \lambda) = \lambda \frac{I_{probe}^{c}(V_{probe}, \omega)}{V_{probe}} + (1 - \lambda)g_{1}(V_{probe} - V_{init})$

$$I_{\text{probe}}^{s}(V_{\text{probe}}, \omega, \lambda) = \lambda \frac{I_{\text{probe}}^{s}(V_{\text{probe}}, \omega)}{V_{\text{probe}}} + (1 - \lambda)g_{2}(\omega - \omega_{\text{init}})$$

 $\textbf{V}_{\text{init}}(\omega_{\text{init}})$: probe voltage (frequency) initial value

g1,g2 : scaling factors

Example: Pierce Oscillator

Two-level method fails

M.Gourary et al, *Comput. Methods Appl. Mech. Engr*, 2000

Solution Traces

- **Robust:** Tracking turning point properly
- Slow: Large number of λ steps (>1000)

High-Q Oscillator Examples

Two-level method fails for these circuits

Circuit	Q	f _o (MHz)	f _{pz} /f _o	# Steps	#Iter	CPU time (sec)
Colpitts	1.00×10 ³	1.5915	0.99987	11	208	17.5
TNT	1.02×10 ³	11.795	0.84738	15	492	26.3
Pierce (BJT)	1.07×10 ⁴	4.0811	0.97036	10	241	13.2
Pierce1 (MOS)	3.69×10 ⁴	7.9992	0.99907	5	98	8.2
Clapp	1.14×10 ⁵	20.124	0.99998	12	243	19.2
Pierce2 (MOS)	2.82×10 ⁵	1.1256	0.99995	26	403	141

Comparison of Homotopy Method with Two-level Method

Circuit	# Iterations		CPU time (sec)	
	Two-level	Homotopy	Two-level	Homotopy
Colpitts (BJT)	63	197	1.6	5.2
TNT	243	310	12.6	23.4
Wien	93	274	6.1	14.5
Sony	88	170	5.6	12.1
Phase shift	57	307	23.9	127.2
Source coupled	74	358	12.8	60.1
Cross coupled	69	398	3.1	20.8
Colpitts (MOS) #	×	172	×	854.4
Sony #	X	593	×	581.2

#: circuit with numerical models, x: no convergence

Difficulty with Ring Oscillator

Bottom-level circuit waveform during the Newton iterative process

0 2 4 0 20 40 0 0 20 40 0 0 0 100 120 No. of Iterations Oscillation with

Divergence with a small damping factor

Oscillation with voltage/current thresholds

Examples and Results

9 stage single-ended ring oscillator

Mixing Noise

Up/down conversion of noise due to mixing

- SPICE noise analysis does not work
- Cyclostationarity/frequency correlation
 important
- Monte Carlo or stochastic methods

Robust Harmonic Balance Method for Oscillators

- Homotopy-based harmonic balance method for high-Q oscillator simulation
- Single delay cell equivalent circuit for ring oscillator simulation with identical delay cells
- Multiple-probe method for general ring oscillator simulation

Noise Analysis Methods

Monte Carlo Methods

- OK for arbitrarily large noise
- Inaccurate for small noise
- Time consuming
- Stochastic Methods
 - Mainly used for small noise
 - Can be very efficient and accurate

The Effect of the Local Oscillator Phase Noise

Noisy oscillators

• Noise can perturb both the amplitude and phase of an oscillator

Phase Noise

- Important for adjacent channel interference, data recovery, and sampled data systems
- Mixing noise methods can handle phase noise away from carrier

- Inaccurate close to carrier

- Most analyses are of specific oscillators under simplifying assumptions
- New methods for proper phase noise calculation available in Spectre-RF, Eldo-RF

Methods for Phase noise Calculation

Hajimiri & Lee Theory:

- Only transient analysis is needed for the simulations
- Transient analysis is needed for each node perturbed by noise
- Impulse sensitivity function (ISF) has to be extracted using post processing

Demir's Theory:

- Require only steadystate solution
- Allows for efficient simulation of large circuits
- The contribution of each noise source can be obtained easily
- Difficult to implement if a steady-state analysis is not available

Phase Noise Equations

· A system of DAEs for a circuit with noise sources

· Single-sideband phase noise spectrum in dBc/Hz

$L(f_m) = 10\log_{10}\left(\frac{f_o^2 c(f)}{f^2}\right)$

A. Demir et al., "Phase noise in oscillators: a unifying theory and numerical methods for characterization," IEEE Trans. CAS-I, May 2000

Perturbation Projection Vector (PPV)

- Periodic vector
 - Transfer function from noise sources to phase noise
 - Similar to Hajimiri and Lee's impulse sensitivity function (ISF)

Perturbation projection vector (PPV)

- Effect of a perturbation on oscillator
 - Phase deviation is zero

curve

PPV facilitates accurate phase noise computation

PPV in the time domain

PPV in the frequency domain

- Flicker noise up-conversion
 - due to DC term of PPV
- High frequency noise gets folded
 - due to harmonics of PPV

Mapping Matrix for White noise

Practical implication of PPV

Mapping Vector for Colored Noise Sources

 Mapping vector for colored noise sources has to be calculated for each frequency of interest

Phase Noise Analysis Implementation

Measured RMS jitter of 1.4 GHz PLL

• PPV-based prediction agrees with measurement

0.20

0.15

0.10

0.00

11111

0000000

Supply PPV [V⁻¹]