Indictors - 4. The circuit below had been energized since before dinosaurs roamed the earth. At some later point in time however, a 50-ton titanosaur Argentinosaurus huinculensis steps on the 2mA current source, instantaneously removing it from the circuit at time t=0. - (a) What is the value of I_L at time t_{0-} ? (to is just before the current source gets stepped on.) - (c) What is the value of V_L at time t_{0-} ? - (d) What is the value of I_L at time t_{0+} ? (which source has just been removes) - (e) What is the value of I_R at time t_{0+} ? - (f) What is the value of V_L at time t_{0+} ? - (g) What is the value of I_L at time $t = \infty$? - (h) What is the value of I_{R1} at time $t = \infty$? - a. ILet=to- is 1 mA. All the current is flowing through the DC short circuit provided by L1. - b. IRet=to-is zero, see (a) - C. Since L1 is A DC short circuit, V=0 - to Since arrived cannot change instantaneously through L1, Att - . e. In e tot will be 1 mA. Current flows out of bottom of L1. And into bottom of R1. - fo c t=to+, V_= VRI = -0.001 V. See (e) - g. et= 00, the inductor will have dissipated all its stones energy in R1, thus IL= 0 et= 00. - h. Inget= 00 will be zero. see (g)