Indictors

- 4. The circuit below had been energized since before dinosaurs roamed the earth. At some later point in time however, a 50-ton titanosaur Argentinosaurus huinculensis steps on the 2mA current source, instantaneously removing it from the circuit at time t=0.
 - (a) What is the value of I_L at time t_{0-} ? (to is just before the current source gets stepped on.)
 - (c) What is the value of V_L at time t_{0-} ?
 - (d) What is the value of I_L at time t_{0+} ? (which source has just been removes)
 - (e) What is the value of I_R at time t_{0+} ?
 - (f) What is the value of V_L at time t_{0+} ?
 - (g) What is the value of I_L at time $t = \infty$?
 - (h) What is the value of I_{R1} at time $t = \infty$?

- a. ILet=to- is 1 mA. All the current is flowing through the DC short circuit provided by L1.
- b. IRet=to-is zero, see (a)
- C. Since L1 is A DC short circuit, V=0
- to Since arrived cannot change instantaneously through L1, Att
- . e. In e tot will be 1 mA. Current flows out of bottom of L1.
 And into bottom of R1.
 - fo c t=to+, V_= VRI = -0.001 V. See (e)
- g. et= 00, the inductor will have dissipated all its stones energy in R1, thus IL= 0 et= 00.
- h. Inget= 00 will be zero. see (g)