- 7_{ι} A lossless, $Z_o = 50\Omega$ transmission line is 1.0×10^6 meters long with $\epsilon_r = 1$. Its far end is shorted. At t = 0, an ohmmeter is connected to the near end. Give the ohmmeter readings at each time below. You may assume that the ohmmeter applies a voltage to measure resistance.
 - (a) at time t_{0-} , ohmmeter reads: $\infty \Omega$, probes are not yet connected to the line
 - (b) at time t_{0+} , ohmmeter reads: 50%, the incident wave is just started down the line
 - (c) at time $t=2_{td+}$, ohmmeter reads: p_{R} , after the reflects wave precises, the short is approximate
 - (d) at time $t = \infty$, ohmmeter reads: \emptyset