‘every problem from all areas except one, such as

designfeature By Kurt Aronow, Aztek Engineering Inc

THE PROPER CHOICE OF WORDS LEADS TO

MORE EFFECTIVE TROUBLESHOOTING.

The linguistics

of electronics

troubleshooting

time that electronics troubleshooting requires

and often completely leave this step out of hard-
ware-development schedules. Yet projects often
hinge on getting recalcitrant electronics working
correctly under an impending deadline. Making
matters worse, engineers rarely learn troubleshoot-
ing skills in school.

The useful troubleshooting techniques
that follow are the result of 20 years of elec- |
trical-engineering projects in the automotive, bio-
medical, instrumentation, and telecommunications
areas. Linguistics is an important aspect of all of
these techniques. Careful study of these techniques
can significantly tighten the learning curve for elec-
tronics troubleshooting.

The Merriam-Webster Collegiate Dictionary de-
fines linguistics as “the study of human speech in-
cluding the units, nature, structure, and modifica-
tion of language” Linguistics guides our thoughts
and what we assume to be true at the moment. If
you say, “I know it’s a software problem,” then
you're probably precluding the search for a hard-
ware problem.

The first three techniques are essential trou-
bleshooting methods that use linguistics to form and
engage useful questions, hypotheses, and theories.
The next three techniques focus on using linguistic
interactions to build rapport, call for outside help,
and manage perceptions.

1. USE THE SCIENTIFIC METHOD

The terms “hypothesis” and “theory” distinguish
guesses from what is closer to truth. A flow chart for
the scientific method, adapted for troubleshooting
(Figure 1), includes the following steps:

1. Define the purpose of the troubleshooting.
Obviously, you want to fix the circuit or the prob-
lem. If the system is small and you designed it to be-
gin with, then fixing the problem is probably your
goal. Otherwise, your goal might be to eliminate

ENGINEERS FREQUENTLY UNDERESTIMATE the

firmware, and then assign that area to someone else
to troubleshoot. If many people are involved, docu-
menting the process of confining the problem can

www.ednmag.com

Figure 1

be useful. This documentation may allow you to re-
late the results of the data rather than appear to of-
fer judgment about someone else’s contribution.
Generally, you troubleshoot problems one at a time,

DEFINE THE
PURPOSE OF THE
TROUBLESHOOTING.

COLLECT INFORMATION
ABOUT THE PROBLEM
AND ITS CIRCUMSTANCES.

GET SOMEONE
ELSE TO ASSIST OR
TAKE OVER IN SOLVING
THE PROBLEM OR
GIVE UP.

ARE YOU
~ CAPABLE
OF SOLVING THE
PROBLEM?

FORM AT LEAST ONE HYPOTHESIS

| THAT MIGHT EXPLAIN WHAT WAS

OBSERVED OR COULD EXONERATE
LARGE PARTS OF THE SYSTEM.

DESIGN AND RUN EXPERIMENTS
T0 CHECK YOUR HYPOTHESIS.

DID THE
EXPERIMENTS
VALIDATE THE
HYPOTHESIS?

YOU HAVE A THEORY OF WHAT'S WRONG.
DESIGN MORE EXPERIMENTS TO TRY TO
““PROVE* THE THEORY, IF PRACTICAL.

. DID THE

' EXPERIMENTS
~_ VALIDATE THE .
THEORY?

CONTINUE TO LOOK AT THE
SYMPTOMS AND THEIR POSSIBLE
ABATEMENTS (THAT OTHERS POSSIBLY PIN-
POINTED AND IMPLEMENTED) TO BE SURE THE
PROBLEM IS REALLY SOLVED.

The scientific method for troubleshooting uses linguistics to form useful questions,
hypotheses, and theories.

DECEMBER 6, 2001 | EDN 95

SR s

designfeature 7roubleshooting techniques

even if more than one problem exists.

2. Collect information about the
problem and its circumstances. This step
is useful whether youre trying to fix a
problem on your own board or someone
else’s. Instead of swapping out parts and
boards, try to observe the symptoms of
the problem—or the smoky remains—
while the problem is happening. Be pa-
tient and collect the information system-
atically. At this stage, try to avoid verbal
judgments about what’s really going on.

3. Ask yourself whether you're capa-
ble of solving the problem. Electronics
systems can be complex. After collecting
only a little information, you may real-
ize that you probably can’t solve the
problem. Or, you may find that you can
solve the problem only if it’s in one small
domain, in which case it might make
sense to find out whether the problem is
in your small domain. Otherwise, it may
be time to pass the problem along to
someone else, or at least include others
in the troubleshooting process.

sis that might explain what you i .~
observed or that could exonerate large
parts of the system. It is often useful to
come up with several hypotheses that
you can investigate. Ask what your ob-
servations could be true of. Remember
that hypotheses are not statements of
fact. Rather, they are ideas that you may
choose to investigate. Suppose you are
troubleshooting a problem in which a
green LED marked Ready is not turning
on when you turn on an instrument. You
could say, “The LED indicator most like-
ly broke when we plugged the power in
backward.” However, a more useful state-
ment is “One hypothesis is that the LED
indicator itself might have broken when
we plugged the power in backward.” An-
other hypothesis is that software is just
not issuing the command to turn on the
LED, which could be true if the software
is not in the Ready state.

5. Design and run experiments to
check your hypotheses. Say or write
what you expect to see to validate or in-
validate each hypothesis. Otherwise, the
results might be ambiguous. Prioritize
the experiments and start running them.
Obviously, you may have to delay de-
structive tests. You may choose to first
run likely hypotheses with simple go/no-
go tests, because such tests yield clear re-
sults. For example, if youre measuring

96 epN | DECEMBER 6, 2001

4. Form at least one hypothe- =y
Figure 2 |

valve clearances on an automobile en-
gine, the 30-thousandths gage may go in
easily, and the 33-thousandths gage may
not go in at all.

Continue to refer to your hypotheses as
just that. It is sometimes useful to state as-
sertions to check hypotheses in predicate
logic terms. For example, you might state,
“If the Ready indicator turns on, and the
board is out of reset, then we might claim
that the interrupts are in their enabled
states. Yet it doesn’t appear that software
has actually enabled the interrupts. How
can we verify the situation?”

It can be useful to develop experiments
using a binary search technique—suc-
cessively dividing the possible domain of
the problem in half—that allows you to
quickly isolate the problem.

6. Once a hypothesis appears to have
some validation, design more experi-
ments to prove or disprove the hypoth-
esis. If the experiments hold up, you’ll

WHAT DID
YOU DO?

PUT IT BACK.

FIX WHAT YOU BROKE |
 ORREPLACEIT.

DOES IT
WORK?

 BEG FORGIVENESS.

The put-it-back troubleshooting technique is
simple: Reverse what you did prior to the
appearance of the problem.

have a theory about what happened.
Many times, the problem and resolution
are clear once you identify them. For in-
stance, you might find that the reason the
Ready indicator isn’t coming on is be-
cause a green LED is missing on the
board. Once you stuff the LED, the Ready
indicator comes on as expected upon
power up, and the problem is solved.

7. Continue to look at the symptoms
and their abatement in certain condi-
tions. After sufficient experience, you
may start referring to the problem’s
symptoms and resolution more as facts

than as tentative hypotheses or theories.
Continuing the above example, suppose
you find that the Ready indicator still
doesn’t come on appropriately on your
circuit boards, and these boards’ green
LEDs are in place. In this case, you may
be stuck at a local minima, but you
haven’t resolved the problem. Go back to
Step 3.

THE SCIENTIFIC METHOD IN PRACTICE

I once spent three months trou-
bleshooting a problem that started off
with a fairly straightforward symptom. A
prototype pulse oximeter had occasion-
al voltage glitches on the output of the
preamp stage, which turns the light re-
ceived by a photodiode into a propor-
tional voltage. The targets of my hy-
potheses ran the gamut from power-
supply noise, poor preamp layout or de-
sign, a bad op amp, poor wiring, and a
bad cable configuration, to noisy light
sources, which create the light for detec-
tion by a photodiode. Several of these hy-
potheses successively graduated to theo-
ries before additional evidence trashed
them. The problem seemed to center
around a sequence of gain changes from
high to low.

Finally, when I had investigated every-
thing else, I formed the hypothesis that
the photodiode itself was the source of
the problem. I couldn’t understand why,
however, because the photodiode’s re-
sponse-time rating was in dozens of
nanoseconds. The breakthrough came
when I found that certain photodiodes
didn’t seem to evoke the problem, and
others did. Further investigation revealed
a secondary 10 to 0.01% turn-off tail of
silicon photodiodes on the order of hun-
dreds of microseconds. This tail is not a
normal characteristic; understanding it,
with the help of some device-physics
books, solved the problem. The point of
this digression is that careful use of the
scientific method can keep you on track
to solve a previously unrecognized prob-
lem in many designs. I started out think-
ing I had a problem on one prototype
pulse oximeter and ended up discovering
awhole new design issue and even patent-
ing the solution (US 6,018,674).

ASK RHETORICAL QUESTIONS

Here are a few “standard” rhetorical
questions that may be useful if you're
stuck while forming your hypotheses:

www.ednmag.com

designfeature _Troubleshooting technigues

@ Are the power-supply voltages at
their nominal values? Where is ground?
These are usually the first questions to
ask about a board. Hundreds of symp-
toms may disappear once the power-sup-
ply voltages are at the right levels with
low noise and ripple. Check the voltages
on the actual pins of the ICs thatare 7~
using the various voltages. A power- ...
supply voltage that is within specification

but not at the nominal value, such as at
4.8V when the spec is 5V 5%, can indi-
cate a salient problem.

@ [s the board out of reset or cycling
in and out of reset? Why? Of course, sev-
eral levels of reset may exist.

® Are the PROMs (EEPROMs,
EPROMs, and flash) programmed? Are
the relevant board parts stuffed in their
sockets with Pin 1 correctly oriented?

® [s the board from a system that has
been in production for years? If so, what
changed, or has the problem always ex-
isted?

@ Is the problem intermittent or con-
tinuous? Under what conditions does it
occur?

@ Have I examined the circuit board in
question? Are there obvious solder shorts
or opens? Do I need to look at it under a
microscope?

@ Has the system been correctly ini-
tialized? Have the power supplies been
correctly sequenced to avoid problems
such as CMOS latchup? Is there an arti-
ficial way to bring up the system to make
the problem disappear or to eliminate
possibly separate system start-up issues?

© Am I operating the board in a system
that supplies it with all of its typical pa-
rameters? For instance, a board with an
analog sensor may rail out if the sensor
isn’t plugged in or if the sensor isn’t in
its typical operating situation.

@ Have I been following standard ESD
precautions?

@ Are the power-supply voltages still
OKz?

® What do the clocks look like? Are all
of the clocks running at the correct fre-
quencies and duty cycles? Are the clocks
appropriately synchronized, phase-
locked, and within specification?

@ Are all of the frame syncs lined up
relative to each other and the clocks?

@ Does unacceptable jitter exist across
clock domains?

@ If the problem is in programmable
logic, does it exist in simulation? What

98 epN | DECEMBER 6, 2001

POWER
MPC850 <
MICROPROCESSOR SUPPLY
Y
DRIVE
CIRCUITRY

igure 3

Drawing and studying the block diagram, in this case for a problem associated with a green LED,
facilitates forming hypotheses and designing experiments.

assumptions did I build into the simula-
tion that may not hold? Did I simulate
the system around the logic design?

@ For programmable logic, am I sure
that I understand what the place-and-
route software actually did?

® For sensitive analog circuitry, is noise
coming in at the front end around the
preamp or most sensitive analog sensor?
How do I know when the output is qui-
et enough? What happens if I turn off all
of the possible noise sources and run the
analog section off of a bench supply?

@ Is the feedback in the circuit correctly
functioning? Is there unwanted feed-
back?

@ Do all of the data streams, such as E1,
T1, ATM, and Ethernet, meet the appli-
cable physical and software standards?

2. PUT IT BACK

Another troubleshooting technique is
simple: Reverse something you or some-
one else may have done prior to trou-
bleshooting. For example, if you took a
part out and there’s a problem, put it back
and see if the problem goes away (Figure
2). A poster in an engine dynamometer
shop describes a useful method of trou-
bleshooting things that once worked well
but no longer do. It’s amazing how many
times the questions in Figure 2 can be
useful even in prototype systems. In fact,
these questions can be very useful when
youre doing FPGA or software-code re-
visions. This technique also works well
during troubleshooting when you’ve ag-
itated the problem.

3. USE A SYSTEMS PERSPECTIVE

Find or draw a block diagram of the
part of the system you're trying to trou-
bleshoot (Figure 3). If there is feedback
within the system, show the elements
that generate that feedback. Drawing and
studying the block diagram facilitates
forming hypotheses and designing ex-

periments based on isolating the fault to
a block. Show enough detail in the block
diagram that you can intelligently form
hypotheses. Often, timing diagrams are
useful in addition to block diagrams.
Timing diagrams can help to organize
observations and test data. State dia-
grams can also be useful.

Your brain processes pictures in dif-
ferent areas than it processes language.
The act of drawing involves the hand and
fingers, which let other parts of your
brain control. Thus, drawing and look-
ing at pictures enhances the use of lan-
guage to form and check hypotheses, be-
cause doing so engages more parts of
your brain.

If you begin by drawing diagrams on
a whiteboard with colored markers, you
may be able to begin processing the in-
formation in a fluid way and easily bring
others into the process if you need to. It
can also be useful to simplify the system
to just one section or circuit board to in-
vestigate the problem. This approach
may allow you to make simple custom
test equipment that emulates the rest of
the system. You can design the custom
test equipment to provide the visibility
you need to look at an interface. Some-
times, the test equipment may just in-
volve a different way of plugging togeth-
er circuit boards that involves better
probing.

4. BUILD A RAPPORT

People generally build a rapport when
they’re talking face to face. A lot of what
we do to build rapport is subconscious.
Linguists tell us that most of our com-
munication is nonverbal—including
tone of voice and body language, for ex-
ample. Of course, our minds tend to es-
tablish rapport or a feeling of being com-
fortably in sync with almost anything we
interact with. For instance, people fre-
quently anthropomorphize characteris-

www.ednmag.com

designfeature _Troubleshooting technigues

tics of their car or their computer work-
station.

You can develop a rapport with the
circuit or software you’re troubleshoot-
ing by learning its characteristic behav-
ior and waveforms. When the item “mis-
behaves,” you may become aware of it in
ways you don’t always consciously real-
ize. For instance, the system may issue a
series of beeps during start-up, which
you may cease to be aware of, except
when they disappear.

One way you can build additional rap-
port with a system is by adding more vi-
sual and audio aids. Attach LEDs and
scope probes, for example. (In the movie
Contact, which explored using radio tel-
escopes to search for extraterrestrial in-
telligence, scientists “listened” to the data
as well as looked at it.) Rapport with the
system tends to be most useful while
gathering data and symptoms about the
problem and while running experiments.

The process also involves developing
an intuition about what is likely to work
and not work with the system. Verbaliz-
ing this intuition can be important in
both developing hypotheses about what
you think is likely to be wrong and in
challenging what you initially thought
was working, such as the photodiode in
the previous example.

For example, you may remember that
when you initially designed the power-
supply circuitry for a circuit board, you
weren’t really sure how much filtering to
add. Now the system has some strange
oscillations in the analog section when
you turn up the gain. You may form a hy-
pothesis that the problem involves the
power supply based on your original de-
sign uncertainty. Questioning the origi-
nal designer can also impart some of this
information.

A special intuitive case—the “man-
qué” case—involves questioning some-
thing that looks or sounds “wrong” even
if you have not worked directly on the
system. This case comes up especially
when parts of the system are conglom-
erated for testing. Intuition may help
when you lack a full understanding of the
mechanical and electronic interactions of
these system parts.

5. USE OUTSIDE HELP

Most electronics systems are the result
of design work by many people. After
you've checked out some of the basics,
you may want to contact some of the de-

100 epN | DECEMBER 6, 2001

signers to see whether they’ve seen the
problem before. If the design of some of
the equipment or software comes from
other companies, you may find helpful
information on their Web sites.

If you do talk to a real person, it is of-
ten most helpful to confine the discus-
sion to the behavior of the subsystem or
part that the person really understands.
In his book Nonviolent Communication
(Reference 1), Marshall Rosenberg de-
scribes a useful system of communica-
tions that involves four steps: observing,
feeling, needing, and requesting. (You

SOMETIMES, YOU ONLY NEED
A FOIL TO HELP RESOLVE A
DIFFICULT TROUBLESHOOTING
PROBLEM.

can find out about the Center for Non-
violent Communication at www.cnvc.
org.) If you were talking to a busy appli-
cations engineer from Motorola, you
might say, “The description in the hard-
ware manual for the MPC850 HDLC
ports on the TDMa is brief, and our
HDLC channels are not functioning. We
have a valid clock. I am feeling anxious
because I need to provide functional
hardware for the software engineers. I
would like you to show me an example of
how to correctly connect multiple HDLC
ports using the TDMa.”

Sometimes, you only need a foil to
help resolve a difficult troubleshooting
problem. For instance, you might go into
your colleague’s office and describe the
problem and the current state of your hy-
potheses. Your colleague might suggest
other hypotheses and experiments, or
you might end up making all of the sug-
gestions yourself.

Recently, I was troubleshooting a series
of problems in a large programmable-
logic simulation. The system had once
worked. Then I had added some neces-
sary modifications, and some parts of the
system no longer worked properly. I had
been working on the changes for several
weeks, and I was weary of it. Toward the
end, [had a few more knotty problems to
resolve. I thought that if I spoke with a
colleague, and we mapped out what was
goingon, I could more quickly find a res-
olution. Then I realized that after I spent
two hours explaining the problem to my
colleague, he was going to ask whether I

checked these aspects of the system un-
der these conditions. Of course, these as-
pects were the ones I hadn’t wanted to
deal with.

So I looked at these background
conditions. I continued to check all of
the surrounding aspects of the prob-
lem that I would need to know before
my colleague could begin to offer use-
ful support. Each time I thought I was
ready to talk to him, I had a few more
questions to answer. By the time I had
answered all of the questions I knew he
would ask, I had solved the problem. I
then solved a second problem in the
same way. Later, I saw the colleague
and thanked him for all of his help. I
explained what had happened—that I
got pretty annoyed at him for asking all
of those questions. In the end, antici-
pating his questions allowed me to re-
solve the problem. He laughed be-
cause, of course, I had never really
talked to him.

6. MANAGE EXTERNAL PERCEPTIONS

If a troubleshooting effort becomes ex-
tended, it is usually necessary to manage
the perceptions of what others involved
in the project think you’re doing. Regu-
lar, proactive reporting, especially in
meetings, can include what you've al-
ready checked out and discovered based
on your hypotheses and experiments.
Then, you can draft a plan of future ex-
periments based on the hypotheses you
have developed thus far.

Relating these two elements helps you
in three ways. First, it reassures everyone
that you are indeed proceeding in a
thoughtful, methodical way. Next, it pro-
vides a useful framework for others to
constructively contribute to what you're
doing. Third, you set yourself up to re-
ceive congratulations once you resolve
the problem.OI

AUTHOR’S BIOGRAPHY

Kurt Aronow, PE, is an electrical engineer
at Aztek Engineering in Boulder, CO. He
received a BSEE from the University of
Texas (Austin) and an MA in engineer-
ing from the University of Colorado
(Boulder) in. You can reach him at 1-
303-417-7073 or kurt@aztek-eng.com.

REFERENCE

1. Rosenberg, Marshall, Nonviolent
Communication, PuddleDancer Press,
1999.

www.ednmag.com

