__MARK HASTINGS
CYPRESS SEMICONDUCTOR
meh@cypress.com

esign solution

NETWORKING PROCESSOR
PERIPHERALS WITH 12C

HERE’S A WAY TO USE PHILIPS SIMPLE TWO-WIRE SERIAL BUS

TO MEET YOUR I/O NEEDS.

s microcontrollers drop in price and offer more

capabilities, designers have found it more cost-

effective to utilize multiple small controllers in

both single-board and multiboard systems. Such
auxiliary processors can relieve the main processor of time-
consuming tasks such as scanning keyboards, display control-
lers, and motor control. These controllers can also be config-
ured as a wide range of application-specific peripherals.

Recently, I was given the task of developing an interface

(software/hardware) that could easily be adapted to many
applications and be based on an industry standard commonly
~ found in embedded processors. After reviewing some of the
typical applications, I came up with a list of requirements to
help zero in on a hardware interface.

* Common on both 32- and 8-bit processors

* Supported by many off-the-shelf peripherals
* Peripheral interface code less than 0.5 kbyte
* Low pin count

* Data bandwidth up to 10 kbytes/s

* Low RAM usage

* Support multiple peripherals on a single bus
* Easy API to use

* No external interface drive hardware required

Because of the low pin-count requirement, a serial interface
was mandatory. Some of the more common serial interfaces
found in today’s processors include SP1,12C, USB, and RS-232.
After weighing the various pros and cons, I settled on the I2C
because of its simplicity, flexibility, and availability on most
low-cost controllers. Low pin count and flow control also give
I2C a big advantage over SPT if higher speed isn't required.

HOW I2C WORKS

I2C is a two-wire bidirectional interface consisting of a clock
and data signals (SCL and SDA). A dozen devices or more
may be included into a single bus without additional signals.
"The spec calls out three speeds of operation: 100 kbits/s, 400
kbits/s, and 3.4 Mbits/s. Most common controllers only sup-
port the 100- and 400-kbit/s modes. The spec
allows for both a single master with multiple
slaves or a multi-master configuration.

~ MARK HASTINGS, electrical engineer, holds
a BSEE from Washington State University,
- Pullman.

Data change

1. During I1%C bit transfers, data in either direction should be stable when
the SCL signal is high.

Start

Stop

2. A stop condition occurs when the SCL is high and the SDA line changes
from low to high.

One very important attribute of I*C is that it supports flow
control. If a slave can't keep up between bytes, it may halt the
bus until it can catch up. This is very useful for slaves that
contain minimal I2C hardware and must support part of the
protocol in firmware. The I2C bus specification supports both
a 7- and 10-bit address protocol. I've found that the 7-bit
addressing is more than sufficient for most applications.

Before starting to write code, we need a good understanding
of how the I2C bus works. The I?C bus will always have at least
one master and at least one or more slaves. The master always
initiates a transfer from the master to the slave. The I2C inter-
face has only two signals, no matter how many peripherals are
attached to the bus.

Both signals are open-collector with pull-up resistors of
about 2.7k to Voo, The SDA signal is bidirectional and can be
driven by either the master or slave, The SCL signal is driven
by the master, but the slave may hold it low at the end of a data
byte to hold off the bus until the slave can process the data.
The master releases the SCL line after the last bit of the byte,
then checks to see if the SCL signal goes high. If it doesn't, the
master knows that the slave is requesting the master to hold off
until the data is processed.

When data is being sent on the bus, data transitions occur
only when SCL. is low. When the SCL signal is high, the

02.14.08 ELECTRONIC DESIGN

ED ONLINE 18079

design solution

~— Slove Addr —

—<+— Dalg[1] ——= <—— Data[2] —s

—<—— Datan] —

2 ST lTe]

LY
JRRRE RN RE BRRARRRR A REREERE A IERERR
él5i413[2|110WT716(514(3]|2]1l0[™7]8]5l4|3l211]0 7]1615/4]3
v = r b LB
g 72 2

AV
XV

o
g
2

3. Shown s an 1°C data transfer with a multibyte read or write.

Optiorial command pretocol

Data format

4. An I°C interface can generally be regarded as a
simple stack.

data in either direction should be stable
(Fig. 1).

When the bus is idle, neither the master
nor the slaves pull down the SDA and SCI..
To initiate a transfer, the master drives the
SDA line from high to low while SCI,
is high. Typically, the SDA line doesn't
change state when SCL is high, except for
a start or stop condition. A stop condition
occurs when SCL is high and the SDA line
changes from low to high (Fig. 2).

The I2C bus transfers data in 8-bit
increments. Each time a byte is transferred,
it must be acknowledged by the device
receiving the data. All data is transferred
most significant bit (MSB) first,

At the beginning of each transfer, a
START initiates the transfer, then a 7-bit
slave address, followed by an R/W flag.
The I2C standard also supports a 10-bit
address, but this application requires only
a 7-bit address. If a slave recognizes the
address, it will pull down the SDA line
during the ACK state, then release it.

The R/W bit will determine the direc-
tion of the data between the master and
slave. If the R/W bit is low, data will be
transferred from the master to the slave. If
this bit is high, data will be read from the
slave by the host.

All data bytes in a single packet will be
in the same direction. After each byte is
transferred, it will be ACKed by either the
master or slave, depending on the direction
of the data flow. Figure 3 shows an example
of a multibyte read or write.

The I°C interface can be thought of as a
simple stack. The lowest level of the stack

is the physical layer, which consists of the
electrical signaling. The next level up is the
Transfer Protocol. It defines how address-
ing and data transfers are handled by the
master and slave. The third layer from the
bottom, the “Data Format” layer, is usu-
ally defined by the peripheral. It dictates
how the data is stored and addressed in
the peripheral. The top level “Optional
Command Protocol” isn't part of the I2C
specification. This will be defined by the
user. Later in this article, we'll discuss an
example of a possible implementation.

Since the Data Format layer is imposed
by the peripheral, each will determine what
format the data is stored. Most peripherals
have one or more bytes that can be read or
written. Some may have 128 or more bytes
that can be accessed by the master.

To optimize data transfers, we need to
impose an internal offset scheme so that if
the master wants to read or write the 100th
byte, it doesn’t have to read or write the
preceding 99 bytes before it. Therefore, the
first byte in a write sequence will always be
the offset in the array of data stored in the
peripheral. If more than one byte is writ-
ten, the second byte will be written in the
offset determined by the first byte.

Address

~+—Slave Addr—

The offset is sticky, meaning if a read is
performed after a write sequence, the data
being read will start at the offset of the
previous write. If a single byte is sent in a
write sequence, only the offset pointer is
changed. Actual data will not be written to
the peripheral (Fig. 4).

The first sequence in Figure 4 shows
three bytes written to a peripheral starting
atoffset AA. For example,if a peripheral has
10 byte locations where data can be written
and AA is equal to 4, data will be written
to the fifth, sixth, and seventh bytes in that
array, since an offset of zero would have
written to the first byte in the array. The
second sequence in Figure 4 only writes the
offset. The third sequence reads four bytes
starting at offset “BB.”If the third sequence
is executed again, it would read the same
four bytes. Until the pointer is changed, a
read will start at the same offset.

PERIPHERAL API

Now that the interface to the external pro-
cessor is defined, we need to define the
API for the slave. Often a communica-
tion interface must be integrated tightly in
the peripheral application, but what if the
application doesn't even have to know that
the I2C interface exists beyond a couple of
setup API commands? This way you could
easily add the I°C interface without mak-
ing significant changes to the application.
For example, you could create an interface
in which your peripheral CPU memory is
easily accessed by the I°C master, whereby

~—Offiet= A= <—DofofAA + 0] ~—DatoAA + 1] ~—Data[AA + 2]+

]S
@
g
=

AoV

Set slave data point to BB

Address
~—Slave Addr— ~+— Offset = B —

RARPRR EARHERA.
61514]3]2{1{0 71615]4{3]2]1]0["

g £3 5§
= % o

)

-

RRARARR R A BAHARRR X BRBRBAAR"
$9

ﬁﬂﬂwqﬂWﬁanﬂWﬂﬂﬂpx
716]5/4132[1}0[7|6]5]4]3]2]1 |0
A
=~

IS
2

dojg| w

X
-

Read four bytes from I2C slave starfing at offset BB

=—Slave Addr—=

~—Dofofg8 + 0]+ —=—DotoBB + 1]+~ ~—DatofBB + 2]~ ~— Data[86 + 3] =

h)

A e e
g i3 R 8

201 PECRBIEREL |
o §

2

AJ¥ ON

4. In this peripheral read and write sequence, only the offset pointer is changed. Actual data won't be writ-

ten to the peripheral.

ELECTRONIC DESIGN GO TO WWW.ELECTRONICDESIGN.COM

65

Surface Mount
Audio

Low Profile

.24 ht.

t
Se OeleG

www

to MIL-PRF-27
e Frequency range
20 Hz to 250 KHz
® Available from
100 milliwatts to 3 watts
® I[mpedance from 20 ohms
to 100 K ohms
e Operating temperature
-55°C to +130°C
e [ow Profile .24"ht.
* Thru-Hole available

Delivery-
stock to one week
for sample guantities

; % See EEM
A’ e or send direct
A\

> for FREE PICO Catalog
Call toll free 800-431-1064

v in NY call 914-738-1400
P l C O Fax 914-738-8225
Electronics,Inc.
143 Sparks Ave.. Pelham, N.Y. 10803
E Mail: info@picoelectronics.com
READER SERVICE 129

S jately
jmmedid
o full Catalod ' ics.com
pic '

e Manufactured and tested

design solution

Peripheral RAM area interface

struct I2C_Regs {
BYTE bStat;
BYTE bCmd;
int divVolts;
char cStr[6];

}MyI2C_Regs;

// Make Read Only to I2C

I2C_SetRamBuffer (10, 4, BYTE * (MyI2C_Regs)):

12C master register view

Exposed I2C
registers

12C register
address offset

0x00 MyI2C‘Reg's.i:»5rut

Myl2C Regs.bCmd

Read/write 0,01
region
0x02 Myl2C_Regs.iVolts[MSB}

0x03

Read only 0x06

region

5. Here's an example of an interface RAM structure, showing how memory

CPU RAM
Address

0x00

0x0D

1 Ox16

can be mapped between the peripheral CPU and the I°C master. OxFF

the master only has access to the area in
RAM that’s allowed by the slave.

The first step is to have the I*C interface
run in the background as an Interrupt Ser-
vice Routine (ISR). This allows memory

reads and writes by the master to be trans--

parent to the peripheral application, mean-
ing no polling of registers, no redirecting or
copying the data, and no interlacing of I°C
interface code within the application.
Setup APIs are necessary to tell the I°C
ISR where to put the data, as well as what
boundaries or length of the data it could
read and write. However, you don't want
the I°C master to have access to data that
it shouldn’t. For example, you don't want
the master to accidentally write over the
main application stack. The API should
tell the interface about the data’s location
and length. It also would be nice to have a
read/write area as well as a read-only area.
Figure 5 shows how memory may be
mapped between the peripheral CPU and
the I°C master. The API command “I2C_

SetRamBuffer (BufferSize, R"W_Length,
DataPointer)" scts the length (BufferSize),
read/write length (R/W_Length), and a
pointer to the data (DataPointer). The data
can be placed anywhere in the peripheral
CPU RAM space.

The I2C master, on the other hand, sees
only the memory that’s exposed by the
API call. Only the 10 bytes in the example
can be seen, and only the first four bytes
can be written. No matter where the buf-
fer is placed, the master sees an array of
data that starts at address 0x00 and goes to
address 0x09.

In this example, the 10 bytes of data are
defined with a structure. The application
may use these variables just as it would any
other local or global variables. If the struc-
ture is defined as global during compile
time, most compilers will flatten it out so
that it doesn’t have to calculate the off-
set each time an element is referenced. In
other words, there will be no code penalty
for using such a structure.

02.14.08 ELECTRONIC DESIGN

ég__sign solution

6. This is a basic program flow
for Cypress’ EzI2C user module.

White byte 1o location

Set R/W flag

Reset okt offset

erru;pis
until affer Stop

condition

RAMIptr+SubAddrspkt_offset]

Load oufﬁ:fd%uﬁer with

ripkt offset]

Inc pkt_offset

l RAM[pir+Sut

Addr = 12C address
pir = address in RAM where slave structure is stored
SubAddr = offset in slave memory as seen by Master

pkt_offset = data packet during a single packet transfer
Peripheral RAM area inferfoce

struct I2C_Regs {
unsigned char bLEDs;
unsigned char bSwitch;
unsigned char bADC;
}I2C_Regs;

12C Master register view
12C register Exposed 12C
address o registers

12C Regs.bLEDs

Read/write 0x00

ion

0x01 12C Regs.bSwitch
Read only it
region

}

0x02

tion presented in the article.

1.This memory structure was created for the example applica-

// Make Read Only to I2C

I2C_SetRamBuffer (3, 2, BYTE * (I2C_Regs));

CPU RAM

Address

0x00

0x10
0x11
10x12

OxFF

IMPLEMENTATION

Now that the interface between the mas-
ter and slave is designed, it’s time to write
some code. Given the availability of I2C in
a wide range of capable microprocessors,
many vendors also supply I?C-friendly
development tools and libraries. You'll still
need to write some of your own code, but
these will accelerate your development. For
example, Cypress PSoC microcontrollers
contain low-level I2C hardware that can
be customized using PSoC Designer and
application-specific EzI2C user modules.

Other than basic hardware setup com-
mands, like I2C_Start() and I2C_Stop()
that enable and disable the interface, the

bulk of the code will be implemented in the
Interrupt Service Routine (ISR). The low-
level I2C hardware understands 1?C bus
Start and Stop conditions and sets a status
flag when the slave address and R/W bit
are received. It doesn’t check for an address
match, but requires the firmware to per-
form that task. '

The flow chart shows the basic firmware
flow (Fig. 6). Note that some hardware
details specific to the manufacturers hard-
ware aren't covered in the flowchart.

For many applications in which each
byte is independent of the other, this inter-
face works well. A good example can be
seen in the example application (%o see List-
ing 1, go to ED Online 18079 at www.elec-
tronicdesign.com). Each of the three bytes is
independent of each other.

This example consists of an 8-pin PSoC
CY8C27143-24PXI microcontroller, two
LEDs, two current-limiting resistors for
the LEDs, a pushbutton, and a potenti-

ometer to simulate a variable voltage.
Internally, the following components are
instantiated: ADC, PGA, two LED driv-
ers, and the EzI2C’s User Module. The
code in the listing is the only firmware the
user must write for this application. The
12C interface code is handled in the ISR as
discussed. The I2C master can monitor the
ADC value, check the switch status, and
set the state of the LEDs in this applica-
tion. This interface can be reused across
many projects without having to modify
the interface again.

Figure 7 shows the memory representa-
tion down to the actual memory locations.
The project used 1076 bytes of flash and
19 bytes of RAM. The I?C code comes to

02.14.08 ELECTRONIC DESIGN

e o

design solution

about 275 bytes, well under the 512 bytes
allotted for this interface.

Some applications require handshak-
ing between the master and slave instead
of just anonymous data read and writes.
Extending this interface to perform hand-

shaking is a minor addition to the master
and slave/application code. There are many
ways to add this functionality.

For instance, if an ADC result is more
than 8 bits, it would be possible for the
host to read the MSB of one ADC con-

Fighting against your PCB-Design Software?

Here’s something that will spare your time and your budget!

Boards designed under EAGLE are found in patient
monitoring equipment, chip cards, electric razors, hearing
aids, automobiles and industrial controllers. They are as
small as a thumbnail or as large as a PC motherboard.
They are developed in one-man businesses or in large
industrial companies. EAGLE is being used in many of
the top companies. The crucial reason for selecting
EAGLE is not usually the very favorable price, but rather
the ease of use. On top of that comes the outstanding
level of support, which at CadSoft is always free of
charge, and is available without restriction to every

EAGLE 4.1

| | > Rotate components in 0.1-

customer. These are the real cost killers!
Schematic Capture - Board Layout
Autorouter
Version 4.1 Highlights
» Powerful library management: fiar Windows®

e.g. move devices between
librarigs, base library for
packages, generate package
variants from other libraries.

» Dynamic ratsnest during routing
process.

> Copy function in schematic.

?,ﬂll.ll!iﬁ

]
s |
TITERTEE

-| > User-defined background color.
| > Miter function for (rounded)

| » Smash for groups.

degree steps.
» Blind & buried vias and pads
with off-center drill.

tracks.

> Measure distances between
arbitrary points.

» Choose alternative raster on-

the-fly with Alt-key.

EAGLE 4.1 Light is Freeware!

You can use EAGLE Light for testing and for
non-commercial applications without charge. The Freeware
Version is restricted to boards up to half Eurocard format,
with a maximum of two signal layers and one schematic
sheet. All other features correspond to those of the
Professional Version. Download it from our Internet Site

or order our free CD.

If you decide in favor of the Commercial Light Version, you
also get the reference marual and a license for commercial
applications. The Standard Version is suitable for boards in
Eurocard format with up to 4 signal layers (max. 99 schematic
sheets). The Professional Version has no such limitations.

http://www.CadSoftUSA.com

CadSoft Computer, Inc., 19620 Pines BIvd,ISui’re 217, Pembroke Pines, FL 33029
Hotline (954) 237-0932, Fax (954) 237-0968, E-Mail : info@cadsoftusa.com

READER SERVICE 87

version and the LSB of the next conver-
sion, If the readings are very stable, you
might not get into trouble. But if the result
is between two values, for example 0x0200
and 0x01FF, you could accidentally get a
reading of 0x02FF.

To avoid this, we can add a command
byte or semaphore. Listing 2 (go fo ED
Online 18079) shows a modified structure
from the previous example. An additional
element has been added to the structure
“bCMD,” and the ADC result variable was
changed from an 8-bit value “bADC"to a
16-bit value “TADC.”

Now instead of the peripheral firmware
blindly updating the ADC result, it waits
for a command or semaphore from the
master. The command could be any non-
zero value of bB(CMD, or bCMD could be
a wide range of commands that the slave/
peripheral can perform. To keep it simple,
the LEDs and the switches will continue
to update constantly. The iADC value, on
the other hand, will only update when the
bCMD value is set to a non-zero value.

The application now monitors bCMD,
and when it is non-zero, it will put the
latest ADC result in iADDC and then set
bCMD to zero. The master will then mon-
itor bCMD and only retrieve iADC when
bCMD returns to zero. In this way, the
master will never get an ADC result that’s
out of sync. The rule for the command/
semaphore is that the master may set it,
and the slave can only clear it. This is the
implementation of the top layer “Optional
Command Protocol” discussed previous-
Iy. There’s no need to make it any more
complicated than that (Listing 3; go fo ED
Online 18079).

The big hurdle in developing such an
interface is writing the I>C driver code in
first place. The driver in this case was writ-
ten in M8C assembly language. I'd rather
use C, but at the time and with the tools
available, it was the best way to guarantee
fast and efficient code. This interface works
for most I°C slave applications.

Once the driver was written, I found I
could create a new custom peripheral in
under an hour. This has been extremely
useful in quickly implementing runtime
debugging. Variables can be monitored
with an I2C master while the slave code is
running. D

02.14.08 ELECTRONIC DESIGN

