BY ROBIN KNOKE

Debugging
embedded C

Ry S R U Rt
s wenty years ago I wrote this article, and I still sometimes
HUS dEhuggmg embedded (get it out and read it for a good laugh. As you know,

(hﬂnged in 20 YGUI'S? You much has changed since those days, and debugging em-
. bedded C is, in many respects, easier than it was. The ba-

hetcha. But the process WI“ sic steps in troubleshooting are still the same, however:

never change: stabilize, iso- T ——

late, correct, and refest. 2. Isolate the problern.

' . 3. Make corrections.

Here's an article from the 4 Retest.

I 988 prem:ere issue Of It’s interesting to note that in my recent experience, programmers

Embedded Sysfems still make some of those same mistakes. The tools are better, but the

: . ¢ programs have become so much larger that I think we have a net loss,

Programming, with some overall

It has become increasingly more important that we organize our
comments fmm the ﬂlﬂhﬂr, project, breaking it down into manageable sizes and thoroughly test-
Rgbin Km}ke_ ing each piece. Serious programmers will adopt a naming convention
' for functions and variables and use header files and function proto-

typing. Choose a coding style for indenting and braces—and stick
with it. These disciplines help tremendously during integration, espe-
cially when working in a team.

Even with new tools at our disposal, it can be very challenging to
eliminate all of the bugs from a large program. It’s only through care-
ful organization, lots of testing, and strict attention to detail that we

" can achieve success. —Robin Knoke, 12/07/08

34 | JANUARY 2008 | embedded sustems design | www.embedded.com

| ebugging is one of a se-
| ries of steps necessary
* | to produce quality
~ software. It consumes

% much of a program-
mer’s time, yet is one of the least dis-
cussed and studied tasks in software de-
velopment. The process of debugging, as
described by Robert Ward in his book
Debugging C (Que Corp., 1986), in-
volves four phases: testing, stabilization,
localization, and correction.

Testing exercises the capabilities of a
program by stimulating it with a wide
range of input values. First, the program
is tested under normal conditions. If it
appears to work, its handling of special
cases and boundary conditions is tested.
Tests should be carefully engineered to
force execution of all program branches
and thus ensure that every decision
node is executed correctly. Any peculiar
performance by the program during
testing is considered a potential bug and
should be investigated. :

Stabilization, the second phase, is an
attempt to control conditions to the ex-
tent that a specific bug can be generated

_at will. Usually a given set of test condi-
tions will cause a bug to appear, and the
bug will remain even when statements

Lexical and syntactic

 bugs are identified
by the compiler at
compile time; intent
and execution bugs
are identified by
testing the program
at run time.

are added in the source code. As we'll
see, however, certain classes of bugs typ-
ical in embedded C programs are diffi-
cult to stabilize; any change in the
source code or linking process can sig-
nificantly alter the bugs’ behavior or

even make them appear to go away.

In the localization stage, the pro-
grammer moves in for the kill. Localiza-
tion involves narrowing the range of
possibilities until the bug can be isolated
to a specific variable or segment of code.

There are three general approaches to
this problem.

One approach is to construct a hy-
pothesis to explain how such data might
be created, then modify the experiment
to test the validity of the hypothesis. This
process of localization employs the scien-
tific method of problem solving, requir-
ing skills quite different from those need-
ed to generate the code in the first place.
Modifying the experiment itself will also
cause some bugs to behave differently.

Ano v to localize a bug is to
single-step through the suspect code,
abnormal behavior. Since the program-
mer knows what’s supposed to happen,
the problem can often be pinpointed the
first time through the program. The
problems with this technique are that it
tends to be tedious when the program
contains loops or complex structures
and that quite often the bug won’t mani-
fest itself during single-step execution.

Bugs can also be localized by exam-
ining a trace history of the executed
code. Microprocessor emulators can be
used to capture a trace of the program as
it executes, and hardware breakpoints
can be used to stop execution where de-
sired. The trace history is then used to
reconstruct what happened when the
bug occurred.

Correction is the final step. After a
bug is located, it must be eradicated. Of-
ten, correction is straightforward; some-
times, however, a bug reflects a concep-

tual design flaw. In any event, after the

bug is corrected, the process starts over
from the testing phase.

Debugging a program running un-
der the supervision of an operating sys-
tem can be quite different from debug-
ging a program in an embedded system.
The primary distinction is that the avail-
able tools are different. An operating sys-
tem environment may support native
debuggers, where an embedded system
may not. Each system has its advantages.

36 | JANUARY 2008 | embedded sustems design | www.embedded.com

In the native environment, the compiler,
source code, debugger, and target pro-
gram are all together in one place. Cross-
debugging—debugging programs in a
separate target system—requires a moni-
tor or an emulator. The code must be
moved back and forth between the de-
velopment system and the target. The
advantage is that emulators provide
hardware specifically designed to facili-
tate the debugging process.

The following process is typical of a

_software development effort once the

specification for an embedded systems
program has been determined:

. Design the program.

2. Code and edit the program (during
this step we may learn how to do
step 1.)

3. Compile the program. If compile-
time errors occur, localize to find the
errors, then return to step 2.

4. Link the program. If link-time er-
rors occur, modify the link com-
mands and relink. If necessary, re-
turn to step 2.

5. 'Test the program. If run-time errors
occur, stabilize and localize the bugs,
then return to step 2. If necessary, go
back to step 1.

To evaluate debugging tools, we
need to understand the sources of po-
tential bugs. In Karel the Robot (John
Wiley & Sons, 1981), Richard Pattis cites
four classes of bugs: lexical, syntactic, in-
tent, and execution. Lexical and syntactic
bugs are identified by the compiler at
compile time; intent and execution bugs
are identified by testing the program at
run time.

COMPILE-TIME ERRORS

The compiler makes several passes
through the code during compilation.
The actual number of passes depends on
the compiler, but most compilers make
three or four, Bugs are usually discovered
only in the first two passes. The first
pass, made by the preprocessor, expands
macros and reads in-eluded header files
or other source files. In the next pass, the
parser and lexical analyzer attempt to
understand and produce cede from the

Rl e Sl

~

N

-
“sa

TS —

O T T P Y e L

T e AR

Y P e

L

S -

e

B e T

T g

S——

source statements. Most of the error
messages are generated during this sec-
ond pass.

The following are simple examples
of compile-time errors:

(® Invalid preprocessor directives
(#page: 7)

Illegal operator use (&a=123;)
Ilegal symbol or identifier name
(byte j;) '

Illegal punctuation or character
(3=0:)

Illegal language grammar (if j==
then j=3;)

Incompatible type operation (*r =

clc

O OIC

rs;)
@ Invalid symbol or number (int
23skidoo;)

For the most part, these bugs result
from types or errors made by a pro-
grammer still learning C and are classi-

fied as syntactical bugs. Stabilizing these

bugs isn’t an issue since the bug recurs

each time the file is compiled.
Localization of a compile-time error

is usually fairly easy, although occasion-

ally a bug (such as an open comment)

may require a little work to localize.
Once the bug is localized, it’s usually
simple to correct.

LINK-TIME ERRORS

The linker’s job is to connect other
(hopefully tested) modules to the pro-
gram and build an executable entity. It’s
possible that one or more of the mod-
ules linked to the target program will
be either test routines capable of exer-
cising the target program or stub mod-
ules simulating a section of code yet to
be written.

If link-time errors are detected, most
likely the linker couldn’t find all the
parts or libraries required to build the fi-
nal program or couldn’t understand the
object modules representing the pro-
gram due to incompatible format,
(These problems are usually also report-

BT
The simplest intent
bug is the one-liner,

a correct statement
but for misplaced
punctuation or an
incorrect assumption
ahout operator
precedence.

ed by the compiler.) In either case, the
error is in the commands to the linker or
the format of the object module, not
bugs in the program. Only rarely, such as
when a library function name is mis-
spelled, can a bug cause link errors.

RUN-TIME ERRORS
At this point, the programmer has suc-

| Mo_'n'ito_ringAﬁplicatiohé-
Just Got Easier

Smarter Embedded Design

The RCM4300 RabbitCore® module gives you more processing
power and memory for your demanding embedded applications
that require web interfaces, graphics or encryption. Data logging
applications will also take advantage of the miniSD™ memory

cards with up to 1GB of storage. It's easy to add the RCM4300 -
or any RabbitCore module - to your pin-compatible design.

RCM4300 RabbitCore®
- Rabbit® 4000 @ 58.98 MHz
+ 10/100Base-T Ethernet
- Up to 1GB of miniSD™
'+ 8 channel/12-bit analog
- Get Your Kit Today for $299
Kits include Dynamic C°® software,
RCM4300 RabbitCore, 512MB
miniSD™ card, dev_ei.opment__'bOard, :
 cables and accessories.

- www.rabbitdevkits.com

www.embedded.com | embedded systems design | JANUARY 2008 | 37

—

38

%
/
int getinput(n,buffer)
int n;
char *buffer;
{
int i, c;
for (i=0; i<n; 1++) {
c = fgetc(stdin);
if (c==EOF)
return(EOF);
*huffer++ = c;
} return(0K);

Listing 1 Code containing two potential boundary bugs.

/* Read n characters from stdin to buffer.
#% Return EQF if end of file, otherwise return OK.

ceeded in getting the program to com-
pile. This accomplishment doesn’t mean
that the program is free of typos or in-
correctly formed statements; it simply
means the compiler didn’t detect them.

Now we come to the difficult bugs.
Run-time bugs that exist without cata-
strophic results—the program will run
but does the wrong things—are intent
errors; those that cause the program to
terminate abnormally are execution
SILOLS.

An intent error occurs whenever a
program runs to normal completion but
produces incorrect results. Examples of
intent errors are one-liner, typematch,
boundary, macro, and design bugs.

The simplest intent error is the one-
liner, a syntactically correct statement
that has an error in it. These errors are
usually caused by an incorrect assump-
tion regarding operator precedence, an
incorrect choice of operator, or mis-
placed or missing punctuation. These
errors, which I call “awshitical” bugs
(based on mutterings from program-
mers who have spent considerable time
staring right at the erroneous statement
without seeing the bug), are a subclass of

intent bugs. Here are a few:

if (=1 {...}
[Feoive s e

Global variables are
like salt: they should
be used sparingly lest
they spoil the stew.
They often cause
problems that surface
during integration.

Dang, we wanted to compare 1, not
assign to it, The i f condition will always
be true.

if (==D; {...}
Qops, we put a semicolon after the

i staternent. The i f has no effect on
the body of statements that follow.

while (c =
{...}

getchar() != 0)

We forgot operator precedence; ¢
will be 1 or 0. What we meant to write is
((c=getchar()) != 0).

Boundary bugs show up when test
inputs are designed to test the boundary
(or beyondboundary) conditions of the
program. When dealing with arrays, it’s
easy to create a boundary bug by forget-
ting that the 10th element in a 10-ele-
ment array is actually at array [9].1t’s
not uncommon for even the most sea-
soned programmer to occasionally gen-
erate invalid array indexes within while
and for loops, especially if the loops are

at all complex. Out-of-bounds array in-
dexing can also cause viral bugs (de-

scribed later),

Boundary bugs don't necessarily in-
volve arrays. Any variable has a limited
range of values, so tests at (and, if al-
lowed, beyond) these limits should be
run. Listing 1 contains two potential
boundary bugs.

On machines that implement 16-bit
ints, requesting more than 32,767 bytes
will produce undesired results due to the
signed comparison i < n. Also, if zero
bytes are requested, the function can
never return an EOF, even if no charac-
ters are available. This exception brings
up an interesting point: if the program-
mer can guarantee that the calling func-
tion will never ask for zero characters,
then this boundary need not be tested.
Indeed, by definition the zero-length
buffer bug doesn’t exist.

A more complex form of bug is the
type mismatch, or typematch, bug. It oc-

func(nbr)
int nbr;

if (is_ascii_digit(++nbr))
printf("%c ",nbr);

printf("%c ",nbr&Ox7f);

if (is_ascii_digit(nbr&0x7f))

Listing 2 Expansions of this macro will cause intent errors.

#define is- ascii_digit(x) ((x>'0'&8&x<='9')71:0)

JANUARY 2008 | embedded systems design | www.embedded.com

curs when the programmer attempts to
pass arguments to a function but the
called function expects arguments of a
different type. Although some of the
newer compilers will catch this and
some lint utilities are designed to look
for precisely this type of error, type-
match bugs still seem to crop up now
and then. Here are two examples:

double nbr =
int x;
sscanf(“123","%d"” ,x);
printf(“%f",nbr);

5.0;

In the third line, x should be &x; in
the fourth line, the argument type is in-

correct. The function argument proto-
typing in newer compilers may catch
these errors for library calls, but pro-
grammers can call their own functions
and may not have included argument
prototypes in their header files.

Macro bugs are errors that are inad-
vertently caused and camouflaged by
macro expansion. When the preproces-
sor expands macros, it substitutes the
macro definition anywhere the macro
name appears in the body of the pro-
gram. The programmer must be aware
of what the code will actually look like
after the macro expansion. If the macro
contains parameters or other macros,
there are even more things to consider.
In Listing 2, both expansions of the
macro will cause intent errors.

In the first expansion, nbr is incre-
mented twice; in the second, the macro
expands to ((nbr&Ox7f >
‘0’ &&nbr&0x7f<= “9’) 71:0) and
doesn’t perform at all as might be ex-
pected. (My compiler concludes that the

errors.

T
alphasort(sl, s2)
char *sl1, *s2;

while (*s1!=0 && *s21=0)

{

if (*sl < *s2) return(NO);
S2++;

if (*s1) return(YES);
return(NO);

Listing 3 An alphabetical sorting function conramlng design

/¥ An ASCII collating function -
** return YES if sl to follow s2, else return NO.

if (*sl > #s2) return(YES);
/* strings are equal so far */
sl++; /* try next char in string */

/* we reached the end of one string */

statement is always false and optimizes it
to a jump instruction.)

Intent bugs characterized by flaws in
the design approach are called design
bugs and result from incomplete com-
prehension of the problem. Some prob-
lems are so complex that it’s hard to

comprehend the entire problem at once.
Sometimes thé insight needed to solve
gﬁt_:_groblern comes from trying to pro-
gram it. Design bugs are often the result
of some simple oversight by the pro-
grammer. Computers are more exact
than we humans and sometimes embar-

Is y u
homeyro n.database

Can CMX Really Put TCP/1P
On My Little Ole m Chip?

Yes, Ma’am,
CMX has been doing
amazing things with
RTOSes and TCP/IP
stacks for many years
now. If you haven’t
visited us in a while,
you are missing a
lot of cool, new
= technology that is
economical, royalty
free, and comes with
source code.

It nght Just put the sparkle back in your eyes!

122?6 San Jose Blvd
acksonville, FL 32223
h: 904. 880.1840

Fax: 904.880.1632

email: cmx@cmx.com

WWW.CITX.com

SYSTEMS

www.embedded.com | embedded systems design | JANUARY 2008 | 39

| 20years aga]

40

ru-mapped /0.
int sendack()
/* address of device */

extern char *data_port;
while(*data_port == 0)

*data_port = 'A';
*data_port = 'C';
*data_port = 'K';

return((int) (*data_port));

Listing 4 Code containing an optimizer bug caused by memo-

/* wait here for 'ready' status */

,./“*: send "ACK' and sequence */

/* return status to caller */

rass us with their explicit logic.

In the alphabetical sorting function
in Listing 3, tests were run using all up-
per-case or all lowercase strings and the
function worked flawlessly. When upper-
case strings were compared with the low-
ercase the function claimed the upper-
case string should come first, regardless
of the characters. This wasn’t expected.

Design bugs like these can be local
to a function or result from the interface
of two or more functions. As design er-
rors span a larger scope, they are consid-
ered to be integration bugs.

Programs that terminate abnormally
contain execution errors. These bugs
may be detected by run-time type
checks, bound checks, or hardware-fault
detection mechanisms in native envi-
ronments, but in an embedded applica-
tion they may simply cause the system to
crash. Examples of execution bugs are
division by zero, running a program
with link-time errors, incorrectly imple-

mented interrupts or assembly code,
out-of-bounds arrays, and assignment to
an invalid (uninitialized) pointer.

Simple execution errors such as di-
vision by zero can be easy to stabilize,
provided the zero is a direct result of a
controlled test case. Otherwise, they can
be hard to localize. For example, some
processors issue an interrupt when an
illegal operation is attempted. If this in-
terrupt wasn’t expected, the program-
mer may not have set a valid vector in
the interrupt vector table. In this case,
the control flow may go “into the
weeds” and the original cause may not
be readily apparent.

Many execution bugs are the result
of an errant store through an incorrectly
initialized pointer or at an out-of-
bounds array index. These bugs belong
to a very nasty class called viral bugs and
can be extremely hard to stabilize and
localize. They crop up in C programs
because of the unrestricted run-time use

regarding x/y and i*4.
float array[256];
calcarray(x,y)
float x,y;

unsigned char i;

for (i=0; i<64; i++)

{
if (y !'= 0}
array[i*4] = (x/y);

Listing 5 An oplimizer might make incorrect assumplions

/* put ratio in every 4th cell in array */

JANUARY 2008 | embedded systems design | www.embedded.com

of pointers, array indexing, and casting.
The effect of a viral bug—corrupted
code, data, or stack—is usually not ap-
parent until several (million) instruc-
tions later. Even then the infected data
might not prove catastrophic but may
cause something else to become infect-
ed. At any rate, when the bug eventually
surfaces, the symptom usually has noth-
ing to do with the original bug.

Ordinarily, uninitialized pointers are
more insidious than out-of-bounds ar-
rays. An out-ofbounds array reference
usually attacks a stack frame or data area
adjacent to the location of the array. An
uninitialized pointer can attack any-
where and is very often inconsiderate as
to whether it attacks code or data. Fur-
thermore, the pointer will probably con-
tain a different initial value each time
the program is run, causing an entirely
different symptom each time.

SUBTLER BUGS

In addition to compile-time, link-time,
and run-time errors, bugs resulting from
integration, portability, and compiler er-
IOTS May OCCur.

Integration bugs form a huge class
of programming errors. These errors
manifest themselves when two or more
modules are combined to form a pro-
gram. The bugs may not cause an error
when the modules are tested separately
but may show up as the system be-
comes intcgratéd into one complex
program. During integration, function
return-value typematch bugs can be-
come apparent. A function may return
an error status if the data it processed is
invalid. If the caller fails to check the
error status, it may inadvertently con-
tinue processing with bogus data.

The opposite may also occur:a
function that’s supposed to return a val-
ue may instead contain a void return. In
this case, the returned value is undefined
and may appear to work during initial
testing. Once integrated into a program,
though, it creates an unexpected bug.

Global variables often cause prob-
lemns that surface during integration.
These variables are like salt: they should
be used sparingly lest they spoil the
stew. One module can change the cur-

rency of a global variable and cause an-
other module to do something unex-
pected later.

These types of errors require the
programmer to rethink the layering of
the program at a modular level. A
source-level debugger may be needed
to understand how the interactions oc-
cur and to hack in a fix, but the real so-
lution might well lie in the program
architecture.

Interrupts can present their own set
of difficult bugs. An obvious example of
an interrupt bug occurs when the inter-
rupt neglects to save or restore the entire
status of the machine before returning,
as often happens when modifications
have been made to an interrupt routine.
If the modification uses a register that
wasn't saved during the interrupt pro-
logue, then any routine in the fore-
ground program that also uses that reg-
ister is vulnerable to the interrupt. This
oversight can cause previously working
code to break.

An interrupt routine may call a
function that isn’t reentrant (a problem
if the foreground program also uses that
function). Library routines, particularly
in floating-point math libraries, may be
reentrant for one brand of compiler but
not for another.

Generally, interrupt routines require
that a debugger be able to deal with code
at the assembly language level. In addi-
tion, the debugger must be able to oper-
ate transparently to the interrupt and
vice versa. In multithreaded or multi-
tasking systems, integration bugs can
breed and multiply. Shared resources
must either have lock semaphores or be
designed to be reentrant.

Processes that malloc memory or
open files must free the resource when
they’re done with it; otherwise, the sys-
tem will eventually—maybe even two or
three days later—run out of memory or
file handles and lock up. Programs em-

-ploying setjump/longjump and goto
statements must be carefully designed to
avoid abnormal control flow that may
leave these resources tied up.

A cousin of the typematch bug is the
portability bug. This bug surfaces during
porting from one machine to another

The quickest way to
debug a program is to
write a program that .
has no bugs.

and can cause both intent and execution
errors. Since C is implemented in differ-
ent ways on different machines, tricks
that work on one machine may not
work on another.

Variations in the size and alignment
of various objects, particularly differ-
ences in the implementation of types
float and doube, can also cause prob-
lems. Segmented microprocessors may
treat pointers differently from nonseg-
mented machines; stackaddressing di-
rection and byte ordering can also be
different. Programmers with limited ex-
perience writing portable C code will
undoubtedly discover these pitfalls the
first time they compile their old pro-
grams on a new machine.

Compiler bugs are rare, but they do
occur. All too often, the bug isn't really
the fault of the compiler but of poor
coding practice. Many of the newer com-
pilers on the market perform code opti-
mization, and the optimizer may make
assumptions about the program that
aren’t desired. This problem is further
complicated by the fact that debugging is

usually performed on unoptimized ob-
jects, while the debugged program is
compiled using the optimize mode. If
bugs show up after optimizing, then the
optimizer is probably the culprit.
Optimized code, especially globally
optimized code, is tougher to debug
since the object program may not match
the source code line for line. Also, some
source-level debuggers won't even allow
optimized code to be debugged, forcing

,us to retreat to our assemblylevel debug-

ger for support. .

‘The most common optimizer bug is
caused by memory-mapped I/O. Con-
sider an I/O device memory-mapped at
address data_port. The function in
Listing 4 waits for ready status, writes a
sequence of characters to the device,
then returns the new ready status to the
caller.

An optimizer could just have a ball
with this. First, it might consider that the
while loop was a redundant read of the
same address and replace it with a single
read of the location. Next, it might de-
termine that there was nothing to do in
the body of the while anyway and de-
cide that the entire while statement
wasn’t even needed. It would probably
assume that the A and C assigned to the
address were dead stores and replace
them with the single assignment
*data_port = ‘K’.As for the return, it
might assume that the last thing written
to the address, a K, should still be there .
and simply return K instead of reading

float array[256];
calcarray(x,y)
float x,y;

{

unsigned char 1i;
register float tmp;
tmp = x/y;

for (i=0; i<256; i+=4)
{
if (y 1= 0)

array[i] = tmp;

Listing 6 A possible result of optimization of the Listing 5
code: an endless loop and a divide error.

/¥ put ratio in every 4th cell in array */

www.embedded.com | embedded systems design | JANUARY 2008

a1

TS-7800 High-End Performance
with Embedded Ruggedness

$269 w $229 avw

500 MHz ARM9

New unbrickable design- 3x faster
Backward compatible w/ TS-72xx
Low power - 4W at 5V

128MB DDR RAM

512MB high-speed onboard Flash
12K LUT user-programmable FPGA
Internal PCI Bus, PC/104 connector
2 USB 2.0 480 Mbps

= 2 SD sockets
a 110 GPIO

Gigabit ethernet
10 serial ports

5 10-bit ADC = 2 SATA ports
Sleep mode uses 200 microamps
Boots Linux in <. 2 seconds

Linux 2.6 and Debian by default

Design your solution with
one of our engineers

= QOver 20 years in business
= Never discontinued a product
= Engineers on Tech Support

= Open Source Vision

= Custom configurations and designs w/. o
" excellent pricing and turn-around time

= Most products stocked and available
for next day shipping ER

See our website for options,
peripherals and x86 SBCs

echnologic

SYSTEMS

We use our stuff.
visit our TS-7200 powered website at

www.embeddedARM.com
(480) 837-5200

the status. Now the code, if represented
as C source, looks like this:

int sendack()

{

extern char *data_port;
*data_port = ‘K’;
return((int) (‘K’));

}

where *data_port is the address of the
device.

Because optimizers may rearrange
the code to minimize computation, the
only safe way to avoid optimizer errors
when dealing with memory-mapped
1/O is to compile the driver with opti-
mization turned off. This practice is
usually safe but in special situations will
cause bugs. When optimizing the func-
tion in Listing 5, for example, an opti-
mizer might make two assumptions:
that the ratio x/y could be done one
time, and hence calculated before the
loop, and that the multiply operation in
the array index computation 1*4 could
be avoided if the loop were written dif-
ferently. The optimizer may produce
something equivalent to Listing 6.

The function now has two bugs!
First, the loop will never terminate be-
cause 1 is an unsigned character and
can’t reach 256; second, a divide error
will occur if y==0. Some compiler opti-
mizers are smart enough to detect these
situations and avoid producing code
with these bugs.

SUGGESTIONS FOR WRITING
BETTER C

The quickest way to debug a program is
to write a program that has no bugs.
Software that’s modular and nicely lay-
ered will usually have fewer integration
bugs. Here are some suggestions for
producing code with a minimum of
problems.

(®) Be extremely careful when using
pointers; uninitialized-pointer bugs
and boundary bugs can be very time
consuming to correct.

(®) Look for typematch bugs by using
Tint or other utilities, or simply do
a “paper debug” to check each func-

tion call for proper argument and
return types.

(*) Be careful when using macros, espe-

cially those containing parameter

substitutions. Capitalizing all macro
names can serve as a reminder that
they’re macros, not function calls.

Use parentheses liberally to guaran-

tee associativity.

Think about portability while

writing code. If necessary, include

a header file containing typedefs

for basic types (BYTE, WORD, etc.),

then use these instead of char

and int. Programs can then be

ported to another machine or
compiler by modifying the type-
defs in the header file.

Use casting when converting types;

don’t expect the compiler to do it

for you. - (withig

Avoid global variables. Laso ’\)

Use header files for function proto-

typing and argument definition.

e Use return codes for modules that
interface with each other.

e Above all, design the tests to exercise
all branches in the program. Include
tests for boundary conditions, espe-
cially for code using pointers. If pos-
sible, keep a test suite for future use,
should the module ever be modified
or ported to another environment.

ONC,

00 ©

Writing software is a complicated
and tedious puzzle. Even with a concert-
ed effort by the programmer, it’s nearly
impossible to produce a nontrivial pro-
gram that’s bug-free the first time. Know-
ing the potential causes of bugs allows us
to adopt disciplines to minimize their oc-
currence and guides our efforts to stabi-
lize, localize, and correct them., W

Robin Knoke cofounded Applied Micro-sys-
tems Corp. When this arficle was written,
he was involved in the specificafion and
design of productivity tools for creatin
and debugging embedded systems soft-
ware. He left AMC in 1990 and is now
running the White Salmon Group, Inc. a
small productdevelopment company.
(“Small and 1 like it that way,” he says.).
White Salmon Group [www.whife-
salmongroup.com) designs embedded mi-
croprocessors for several clients—and

Knoke siilt does a lot of C coding. You can
reach him at knoke@whitesalmon.com.

