
Chip Programming Model
I Modules, Registers and Bits

I Xmega comprised of modules: CPU, SPI, UART, I2C, etc.
I More than one instance of a module may exist.
I Name reflects the function of the module.
I Each module instance has a suffix to identify it:

I USARTC0: USART 0 on port C
I SPIE1: SPI 1 on port E

Chip Programming Model - Modules

I Each module has a fixed address in I/O memory.

I For SPI on port D:

#define SPID (*(SPI_t *) 0x09C0) /*(iox64a1u.h line 2683)*/

Chip Programming Model - Registers

I Module registers are located a fixed offset from the module base
address.

I Register offsets are equal for all instances of that module type.

I Each module has status and control registers.

#/*(iox64a1u.h line 3584) */

/* SPID - Serial Peripheral Interface D */

#define SPID_CTRL _SFR\MEM8(0 x09C0)

#define SPID_INTCTRL _SFR_MEM8 (0x09C1)

#define SPID_STATUS _SFR_MEM8 (0x09C2)

#define SPID_DATA _SFR_MEM8 (0 x09C3)

Chip Programming Model - Registers

I Modules of the same type have identical sets of status and control
registers.

I Otherwise, there would be multiple structs for multiple SPI modules.

#/*(iox64a1u.h line 2539) */

/* Serial Peripheral Interface */

typedef struct SPI_struct

{

register8_t CTRL; /* Control Register */

register8_t INTCTRL; /* Interrupt Control Register */

register8_t STATUS; /* Status Register */

register8_t DATA; /*Data Register */

} SPI_t;

Chip Programming Model - Bits

I Modules of the same type (SPI, USART, etc.), within the same part
family (A,B,C) have identical sets of status and control bits.

Figure: SPI Port B,C,D or F Control Regs

Figure: Timer Counter 0 or 1 Control Regs

Chip Programming Model - Bit Masks

I Bits in a register can be have an individual function or be part of a
bit group that have a joint function.

I A bit with an individual function could be the single enable bit for a
module. For example, bit six of the SPID control register enables
that SPI device.

I We would access this bit like this:

SPIC.CTRL = SPI_ENABLE_bm

I The bm suffix indicates a bit mask.

I In iox64a1u.h, line 7014, we see:

#define SPI_ENABLE_bm 0x40 /* Enable Module bit mask. */.

Thus, the SPID enable bit is set to one.

Chip Programming Model - Bit Groups

I A bit could also be part of a bit group.

I The bit would be part of a group of bits that choose upto 2n

selections where n is the number of bits in the group.

I For example, the group of bits that choose which of four modes a
SPI module is in:

Figure: Four SPI Transfer Modes

Chip Programming Model - Bit Groups

I We would access the SPI mode group configureation as:

SPIC.CTRL = SPI_MODE_0_gc;

I The gc suffix indicates group configureation.

I SPI MODE 0 gc is defined as 0x00 in iox64a1u.h, line 2548.

/* SPI Mode */

typedef enum SPI_MODE_enum

{

SPI_MODE_0_gc = (0x00 <<2), /* SPI Mode 0 */

SPI_MODE_1_gc = (0x01 <<2), /* SPI Mode 1 */

SPI_MODE_2_gc = (0x02 <<2), /* SPI Mode 2 */

SPI_MODE_3_gc = (0x03 <<2), /* SPI Mode 3 */

} SPI_MODE_t;

