
Debugging Techniques

I Debugging embedded HW/SW systems differs greatly from
debugging software or hardware alone.

I Key steps to debugging:1

I Make the bug repeatable
I Observe its behavior and gather information on it
I Create a suspect list and generate a hypothesis
I Try your fix, unfix it, then re-fix

I Prerequisites to debugging:
I Observability (o-scope, meter, blink an LED, print statement)
I Controlability (swap circuitry, push a button, initiate the fault)
I Keep notes on what you are doing

1adapted from Jack Gansel’s ”The Art of Designing Embedded Systems”



Debugging Techniques

I Much of debugging is about asking the right questions
I What changed last?

I New cable, new hardware, re-soldered a wire, new code

I Is this a problem or a symptom?
I A part getting hot doesn’t need more cooling

I Is the power on? Is the input voltage correct?
I Five volts from the USB port is never 5 volts

I Are you compiling/editing the right file?
I Is the hardware basically OK? Run a sanity test.
I What assumption are you making that is wrong?
I Explain the problem to someone else.



Debugging Techniques

I Debugging requires a correct attitude
I Assume that things are somewhat broken
I Assume that a few small bugs may still exist
I Trust the laws of physics. Your project depends on them.
I You will witness something that cannot be happening; so why is it

happening? Retrace assumptions.
I Take a break. Walk around, get a coffee. Take a nap.



Debugging Techniques

I Debugging requires discipline
I Resist unlikely sources of bugs:

I bad parts, compiler error, phase of moon

I Stay focused on one problem at a time
I Keep to the scientific method
I When you find something you can’t explain, write it down.
I Resist random o-scope probing
I Don’t take shots in the dark



Debugging Techniques

I It helps to avoid bugs in the first place
I Build a little hardware, write a little software, test
I Write throwaway code for targeted hardware testing



Debugging Techniques

I Perform a sanity test to find programming problems, power supply
issues, shorted lines, missing libraries and 101 other silly things.

//

// count.c, Binary counting pattern on PORTB LEDs.

//

#include <avr/io.h>

#include <util/delay.h>

int main() {

uint8_t i;

DDRB = 0xFF; //set port B to all outputs

while (1){

PORTB ++;

for(i=0; i<=4; i++){ _delay_ms (100);} //0.5 sec delay

}//while

}//main



Debugging Techniques

I Debugging the LED display board

I See if segments are connected, and digits are enabled correctly.

I Port D push-buttons 4-7 select the digit via the decoder. All
segments should illuminate on each digit.

//LED board testing code

int main (){

DDRA = 0xFF; //set port A to all outputs

DDRB = 0xF0; //set port bits 4-7 B as outputs

DDRD = 0x00; //set port D all inputs

PORTD = 0xFF; //set port D all pullups

PORTA = 0x00; //set port A to all zeros (all segments on)

while (1){ PORTB = ~PIND;} //push buttons selects digit

} //main



Debugging Techniques

I More debugging of the LED display board

I Walk through each digit and each segment.

//LED board testing code

int main (){

uint16_t i; //big delay counter

uint8_t k=0; //digit counter

while (1){

k = (k % 5); // digits vary from 0 to 4

PORTB = (k << 4); //walk the digits via upper nibble

PORTA = ~0x01; for (i=0; i <100000; i++){} //A

PORTA = ~0x02; for (i=0; i <100000; i++){} //B

PORTA = ~0x04; for (i=0; i <100000; i++){} //C

PORTA = ~0x08; for (i=0; i <100000; i++){} //D

PORTA = ~0x10; for (i=0; i <100000; i++){} //E

PORTA = ~0x20; for (i=0; i <100000; i++){} //F

PORTA = ~0x40; for (i=0; i <100000; i++){} //G

PORTA = ~0x80; for (i=0; i <100000; i++){} // colon

k++; // increment digit counter

} // while



Debugging Techniques

I Debug scenarios, what to do when...
I One of the digits are not displaying.
I Two digits display at simultaneously
I None of the the digits light up.
I Segments exhibit ghosting when your hand is close to the board.
I The entire display works one time through then quits.



Debugging Techniques
I Bugs that mysteriously go away will mysteriously reappear

I ”...reason back from the state of the crashed program to determine
what could have caused this. Debugging involves backwards
reasoning, like solving murder mysteries. Something impossible
occurred, and the only solid information is that it really did occur.
So we must think backwards from the result to discover the
reasons.”
- Brian W. Kernighan, The Practice of Programming

I ”The single greatest asset a designer can have is self-knowledge.
Knowing when your thinking feels right and when you’re trying to
fool yourself...knowing your strengths and weaknesses, prowesses
and prejudices...learning when to ask questions and when to believe
your answers.”
- Jim Williams, Linear Technology

I ”When things are acting funny, measure the amount of funny.”
- Bob Pease, National Semiconductor

I ”The key to not getting lost is paying attention to the landscape as
you move through it.”
- Mary Cochenour - Gaia GPS


