
Encoder Usage

I Shaft encoders are often used to replace analog controls

I They are cheaper and more reliable than analog controls

I Encoders provide digital outputs that can indicate shaft movement
and speed

I There are many types of encoders available for various purposes

I We will look at simple quadrature encoders that are used to sense a
user selectable knob position such as a volume control.

Encoder Usage

I A pair of signals are in quadrature when they differ in phase by 90
degrees.

I Our encoders have two outputs, each 90 degrees out of phase with
each other.

I As the shaft is turned, the A and B outputs pulse while maintaining
a 90deg shift.

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

11

01

00

10

A

B

A

B

Quadrature
 Encoder

COM

(new_A=0) &
(new_B=1)

(new_A=1) &
(new_B=1)

(new_A=0) &
(new_B=1)

(new_B=0)
(new_A=0) &(new_A=1) &

(new_B=0)

(new_A=0) &
(new_B=0)

(new_A=1) &
(new_B=1)

(new_A=1) &
(new_B=0)

rtn(1)

−−

++

++

−−

−−

++

++

rtn(0)

off

on

on

off

detent

detent

detent

detent

T1 T1 T2 T3 T1

00 10 11 01 00

Clockwise

R1
10K

R2
10K

Vdd

A

B

off

on

on

off

A samples B

B samples A

T1 T1 T2 T3 T1

00 10 11 01 00

Clockwise

Figure 1: Quadrature Encoder Behavior

Encoder Usage

I Our encoders don’t need a power supply. But, their outputs must be
pulled up.

I Pulling up the encoder pins is most efficiently done with uP internal
pullups.

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

11

01

00

10

A

B

A

B

Quadrature
 Encoder

COM

(new_A=0) &
(new_B=1)

(new_A=1) &
(new_B=1)

(new_A=0) &
(new_B=1)

(new_B=0)
(new_A=0) &(new_A=1) &

(new_B=0)

(new_A=0) &
(new_B=0)

(new_A=1) &
(new_B=1)

(new_A=1) &
(new_B=0)

rtn(1)

−−

++

++

−−

−−

++

++

rtn(0)

off

on

on

off

detent

detent

detent

detent

T1 T1 T2 T3 T1

00 10 11 01 00

Clockwise

R1
10K

R2
10K

Vdd

A

B

off

on

on

off

A samples B

B samples A

T1 T1 T2 T3 T1

00 10 11 01 00

Clockwise

Figure 2: Typical Encoder Connection

Encoder Usage

I The encoder we will look at is similar to the Bourne
652-PEC12R-4117F-N12.

I It emits twelve pulses per 360deg rotation from its A and B outputs.

I The detent occurs between adjacent edges of A and B.

I The switch bounce is specified as 2mS(max) at a rotation speed of
15 RPM.(slow!)

I This specification also states that this measurement uses a
”standard noise reduction filter”, whatever that is! They don’t say.
Probably a capacitor-based low pass filter.

I This specification also states that ”Users should verify actual device
performance in their specific applications.

I A prudent engineer would test it themselves! The paranoid survive!

Encoder Usage
I How can uPs track the encoder movement?
I Some have built-in encoder circuitry.
I Microchip’s dsPIC33F family has its QEI module.
I Note the three inputs.
I The index pin allows an absolute position to be determined.

Figure 3: Microchip QEI Module

Encoder Usage

I How can we determine encoder movement with just software?

I One way is to take advantage of the fact that one output will
produce an edge 90 degrees out of phase with the other output. If
we sense the edge and sample the other output, movement and
direction can be ascertained.

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

11

01

00

10

A

B

A

B

Quadrature
 Encoder

COM

(new_A=0) &
(new_B=1)

(new_A=1) &
(new_B=1)

(new_A=0) &
(new_B=1)

(new_B=0)
(new_A=0) &(new_A=1) &

(new_B=0)

(new_A=0) &
(new_B=0)

(new_A=1) &
(new_B=1)

(new_A=1) &
(new_B=0)

rtn(1)

−−

++

++

−−

−−

++

++

rtn(0)

off

on

on

off

detent

detent

detent

detent

T1 T1 T2 T3 T1

00 10 11 01 00

Clockwise

R1
10K

R2
10K

Vdd

A

B

off

on

on

off

A samples B

B samples A

T1 T1 T2 T3 T1

00 10 11 01 00

Clockwise

Figure 4: Quadrature Encoder Behavior

Encoder Usage

I This behavior is easily captured with the following code:

int8_t encoder_chk(uint8_t encoder_var) {

//A and B are in bits 0 and 1

static uint16_t state = {0}; // holds bits from encoder

uint8_t a_pin , b_pin; // encoder pin states

//a_pin and b_pin are asserted TRUE when low

a_pin = ((encoder_var & 0x01) == 0) ? 0 : 1;

b_pin = ((encoder_var & 0x02) == 0) ? 0 : 1;

// update shift using only the A pin

state = (state << 1) | a_pin | 0xE0;

//check for falling edge on A pin

//if it did , then B pin state indicates direction

//of rotation. Return 1 for CW, 0 for CCW

if (state == 0xF0){ return (b_pin) ? 1 : 0; }

else {return -1;} //no movement detected

} // encoder_chk

Encoder Usage

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

11

01

00

10

A

B

A

B

Quadrature
 Encoder

COM

(new_A=0) &
(new_B=1)

(new_A=1) &
(new_B=1)

(new_A=0) &
(new_B=1)

(new_B=0)
(new_A=0) &(new_A=1) &

(new_B=0)

(new_A=0) &
(new_B=0)

(new_A=1) &
(new_B=1)

(new_A=1) &
(new_B=0)

rtn(1)

−−

++

++

−−

−−

++

++

rtn(0)

off

on

on

off

detent

detent

detent

detent

T1 T1 T2 T3 T1

00 10 11 01 00

Clockwise

R1
10K

R2
10K

Vdd

A

B

off

on

on

off

A samples B

B samples A

T1 T1 T2 T3 T1

00 10 11 01 00

Clockwise

Figure 5: Tricking the Encoder Software

I This code is easy to trick however. Imagine you’re in T3 and ”rock”
the encoder shaft between T3 and T1.

I This would cause repeated ”B samples A” events.

I This would manifest itself in the encoder code indicating successive
clockwise rotations.

Encoder Usage
I Here is a elegant state-machine based solution.

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

11

01

00

10

A

B

A

B

Quadrature
 Encoder

COM

(new_A=0) &
(new_B=1)

(new_A=1) &
(new_B=1)

(new_A=0) &
(new_B=1)

(new_B=0)
(new_A=0) &(new_A=1) &

(new_B=0)

(new_A=0) &
(new_B=0)

(new_A=1) &
(new_B=1)

(new_A=1) &
(new_B=0)

rtn(1)

−−

++

++

−−

−−

++

++

rtn(0)

off

on

on

off

detent

detent

detent

detent

T1 T1 T2 T3 T1

00 10 11 01 00

Clockwise

R1
10K

R2
10K

Vdd

A

B

off

on

on

off

A samples B

B samples A

T1 T1 T2 T3 T1

00 10 11 01 00

Clockwise

Figure 6: Encoder-Tracking State Machine

Encoder Usage
I Here are the ”bones” of the software state machine.

return_val = -1; // default return value , no change

if ((new_A != old_A) || (new_B != old_B)){ //if change occurred

if ((new_A == 0) && (new_B == 0)) {

if (old_A == 1){ count ++;}

else {count --;}

}

else if ((new_A == 0) && (new_B == 1)) {

if (old_A == 0){ count ++;}

else {count --;}

}

else if ((new_A == 1) && (new_B == 1)) {// detent position

if (old_A == 0){if(count== 3){ return_val =0;}} //one direction

else {if(count ==-3){ return_val =1;}} //or the other

count = 0; // count is always reset in detent position

}

else if ((new_A == 1) && (new_B == 0)) {

if (old_A == 1) {count ++;}

else {count --;}

}

old_A = new_A; //save what are now old values

old_B = new_B;

} //if change occurred

return (return_val); // return encoder state

